对于音频放大器而言,其中一个主要的外部干扰来自电源供应。透过电容或使用专属切换式电源供应(以反馈确保稳定输出电压),即可将干扰减至最低。在LCD电视中,不是透过无干扰切换式电源供应,而直接以+12V或+24V背光电源供应驱动音频放大器,即可大幅减少系统成本。

一般是以电源抑制来衡量放大器是否能够抑制电源供应干扰,不过,这种技术无法突显桥接输出配置的闭环系统与开环系统的优点。这种技术将输出接地至放大器,并且在DC电源供应上增加频率组件,以调变电源供应。在开环系统中,输入电压与内送的电源供应涟波相互混合(图 4)。在零输入时,不会出现混合情形,而且桥接负载上各个输出的干扰都会被消除。在含有正弦曲线输入频率的实时音频系统中,输入频率会与电源供应涟波相互混合,而造成音频频带出现噪声及失真。开环放大器的增益也可使用电源供应涟波加以调变。该效果可从图5的总谐波失真及噪声 (THD+N) 曲线图看出,该图将闭环放大器与开环放大器进行相互比较。

在图5中,100Hz 正弦波施加于各个系统的输入,并且增加输入电压,以描绘THD+N与8Ω 负载的输出功率。使用的电源供应是现成的12V切换稳压器。驱动5W输出功率进入负载时,在各个放大器的输入端所测得的输入涟波为 300mVp。由于电源供应的需求导致电压涟波增加,开环系统及闭环系统的THD+N差异随之增加。这种现象在较低频率更为明显,因为稳压器难以修正较大的输出摆幅。

总结来说,在设计音频电路专用的严格控制系统电源供应时,闭环系统能够让音频电路设计人员在不增加时间或成本支出的情况下提升音频性能。

HDTV闭环系统的EMC性能设计方案

图4 开环示意图

HDTV闭环系统的EMC性能设计方案

图5 THD+N 与电源比较 – 开环及闭环放大器

为何选择 EMC

此外,闭环系统能够使输出转换的升降边缘趋缓,完全不影响总谐波失真或回转率控制。其中闸极驱动器缓慢地从关闭状态转换为开启状态,因此 EMC测量中出现更为减弱的系统响应(较低 dV/dt)及更低的峰值。

失效时间是造成D类放大器总谐波失真的关键因素,这是输出半桥的两个MOSFET同时处于关闭状态的时间。在开环系统中,两个输出MOSFET的失效时间必须相同才能避免二阶效应。若要将失效时间减至最低,脉冲宽度调变(PWM)输出边缘的升降会极快地转换。图6比较一般开环放大器(以 2.4 纳秒测量)(6a) 及闭环装置(以10纳秒测量)(6b) 的上升时间。值得注意的是范围撷取的EMC因素 – 大量过冲的快速上升边缘。