为了满足客户的测试需求,部件厂商可以采用一系列针对ISO 11452 和SAE J1113中包含的RF测试规范而设计的汽车部件测试系统来帮助完成工作。这些测试系统通常都是自含(self-contained)系统,遵循所有标准中规定的最高级别测试规范。采用这样的系统之后,部件厂商在对多个标准进行测试时,用到的许多测试仪器都是相同的,因而能节省大量资金。以下我们将讨论几种RF测试方法和汽车厂商测试需求中所规定的一些测试参数,并探讨部件厂商怎样才能根据不同客户的测试需求搭建相应的测试系统,达到只测试需要项目的目的。
要想测试一个汽车部件的RF抗扰性,必须通过一种与车内干扰出现方式相当的方式向其施加RF干扰。这就引入了第一个变量。汽车可能会暴露在一个外场中,也可能携带有会产生干扰信号的发射机和天线,但无论如何,干扰场都可以直接作用于部件所处的位置。例如,当该部件安装在仪表盘上或附近的开放式区域时,它所产生的干扰就比当它被安装在车辆底盘附近甚或是在引擎箱内这样的屏蔽区时造成的危害要大得多。另一方面,为了供电和信号连接的需要,所有电子模块都连到车辆的配线系统。
而配线装置相当于一个有效的天线,能够与RF干扰耦合,不论部件安装在什么地方,RF电流都可能通过其接插件传导到部件中。鉴于此,我们通常采用的测试方法有两组:辐射干扰测试和传导干扰测试。
辐射干扰测试
所有的辐射测试法都不外向被测装置施加一个强度得到校准的RF场,这样,就能将RF电流和电压引入装置的内部结构,然后这些RF电流和电压又会出现在有源器件的敏感节点上,从而在电子线路中造成干扰。不同方法在施加RF场的方式上有所不同,它们各有其优、缺点和局限性。
微波暗室中的辐射天线测量法
最简单明了的产生RF场的方法就是向一个天线灌入能量,并将其指向被测设备(EUT)。天线能够将RF能量转化为一个辐射场,并使其充满测试区域。由于需要在很宽的频谱范围内产生高电平的RF信号,为了避免与附近的其他合法无线电用户相互干扰,测试应该在一个屏蔽室中进行。但这会引入墙壁的反射,从而改变室内的场分布。为解决这一问题,需要对屏蔽室的表面进行电波消声处理,创造一个“吸波室(absorber lined chamber)”环境,而这又会极大增加测试设备的成本。测试时使用的天线在被测频率范围内应该具有较宽的频率响应。车辆测试中的测试频率可能从10kHz到18GHz,因此需要的天线也有许多种不同的类型(见图1)。此外,加之于EUT上的场也应该尽可能均匀并且受到良好控制。测试时的场可能会影响暗室的规格,因此天线不能离EUT过近,方向性也不能太强,否则产生的场会只集中于EUT的某一个区域。同时,天线和EUT距离过近还会导致二者互感增大,从而加大天线上所加信号的控制难度。被测对象的物理尺寸越大,这一距离要求就越难满足。另外,根据公式P = (E · r)2/30 watts(当天线具备单元增益时),天线离EUT越远,达到某个给定场强时需要的功率就越大。