太赫兹高速通信系统详解

图2、220 GHz 分谐波混频器电路结构示意图

1.3 分谐波混频器的测试

采用增益法求解混频器的等效噪声温度和变频损耗,可降低测试系统搭建的复杂度,简化测试过程,并且易于实现测试自动化。本节采用了基于Y 因子法测试并通过增益法求解220 GHz 分谐波混频器的等效噪声温度和变频损耗。

图3 中2 条实线给出了220 GHz分谐波混频器的双边带等效噪声温度和变频损耗实验结果。中频频率固定为2 GHz,在188~244 GHz 频带内,双边带等效噪声温度则需要小于1 500 K,双边带变频损耗则会小于10 dB,最小双边带等效噪声温度为680 K。图中每个点的性能都是在最佳本振功率激励下获得的,所有点的最佳本振功率在2~3.5 mW 范围内。表1 为本文所研究的分谐波混频器的结果与其他同类产品的指标对比。

太赫兹高速通信系统详解

图3、220 GHz 分谐波混频器双边带等效噪声温度和变频损耗实验结果

太赫兹高速通信系统详解

表1、本文实验结果与其他同类产品的指标对比

2、太赫兹二倍频技术

二倍频是产生太赫兹频率信号的一种重要技术途径,二倍频器作为组成固态太赫兹系统中本振源的关键电路之一有着广泛的应用需求。本章中我们从作为二倍频器非线性器件的变容二极管工作机理入手,通过深入的理论研究,基于理论推导讨论了变容二极管参数对二倍频器电路性能的影响,并且给出了设计变容二极管时需考虑的主要参数。针对190 GHz 二倍频器的电路性能需求,我们定量分析了变容二极管参数对各电路性能的影响,设计出二倍频器的变容二极管。实验结果与仿真预测较为一致,验证了变容二极管建模、器件设计等的有效性[16]。

2.1 变容二极管三维建模分析

二极管的功率容量是目前制约二倍频器发展的主要限制因素,要增加二极管的功率容量,一种常用的方法是在二极管芯片上集成更多的管芯来分摊输入功率,这在平面二极管工艺出现以后得到了广泛的应用。但是管芯数量的增加必然导致二极管芯片尺寸的增大,随着二倍频器工作频率进入太赫兹频段,电路几何尺寸也在相应地不断减小,芯片尺寸的增大往往会给电路的电磁特性带来负面影响,所以管芯的数量受到了基片电路和腔体几何尺寸的限制。本文中我们所建立变容二极管模型如图4 所示。