无论是从资本、技术还是政策层面,AI医疗将进入新的发展期。而AI医疗的普遍应用的场景也涉及3方面类别,其一是医疗机构内部全流程的信息化管理体系;其二是AI技术在连接医疗机构与患者之间的功能、和及分级诊疗体系;其三是AI辅助疾病诊断、临床医疗决策体系。
但AI在深入、持续应用在医疗领域的过程中仍存许多难题。“AI落地的场景及产品不够多,最大原因是在于样本不够、数据无法标准化,那么其产品的总结能力就不高。”同济大学医学院影像系主任王培军表示。尽管数据受限,但在样本沉淀数最多的影像领域,AI医疗仍能承载一定使命。
以某细胞瘤141例的数据样本为例;早期患者可以通过磁共振检查来看是否有增强、坏死,AI影像分析还能注明是否有水肿区域;再进一步做了进行基因检测后可以看到,该结果显示的特征和某细胞瘤很多生物信息是相关;而这是我们放射科医生肉眼所不容易判断的。
上述数据缺乏的难题究竟能否得到解决?AI技术必须和临床场景结合才具备实用性;AI发展阶段的临床数据库标准建设很重要;要将产、学、研、用放在一个开放的平台上,多方同心协力;要具备医疗与工程相结合的意识。另有业内人士认为,为了降低风险,AI医疗领域的安全保障机制、安全和服务管理办法等仍需完善。“这方面则可以参考国家卫健委在2017年2月份发布的15个限制临床应用的技术管理规范。
高学成也提到,当下亟待突破的应该是医疗健康数据的互通共享,这也包括了将数据格式、数据质量、开放借口等标注化,并建立其背后的标准规范体系、安全技术体系、数据生命周期管理。此外,AI医疗领域的下阶段发展还将面临一定的社会伦理风险,比如人(医生职业自由与设计者、制造者)在责任认定所面临的风险,患者隐私保护所面临的风险,以及医生主体性地位面临的道德等风险。
关于医疗电子就介绍完了,您有什么想法可以联系小编。