检测到手写笔后,必须准确进行报告。与典型的手指触摸不同,无源手写笔的尖笔头使用户能够精确地看到其放置到LCD的确切位置。因此,尽管信噪比显著降低,但用户对手写笔操控的精确度却有着更高的预期。此外,线性度也是一个关键因素,因为手写笔通常用于书写。

无源手写笔与精确度和线性度相关的关键问题就是“死区”。“死区”是指触摸屏上即使在输入刺激转移到新位置时报告信号电平也不发生改变的区域。例如,2毫米的无源手写笔笔尖在触摸屏上可由典型的5毫米传感器完全包围。手写笔在传感器中心位置的微小移动很难被检测到,但对于传感器而言,输入通常被量化到元件的中心,因此,当手写笔的移动限于传感器范围内时,会被报告为处于固定位置,这就是所谓的死区。

解决此问题的一般性方法就是分析所有周围的传感器,并用其创建查找表索引,以此来校正报告位置,从而更好地掌握笔尖所在的实际位置。因此,无源手写笔的精确度和线性度问题归根结底就是要通过极具创意的方法来生成上述位置索引,或者设计出更先进的查找表,因为死区通常是一个无法克服的物理问题,因此必须找出适当的校正办法。

早期无源手写笔的实现方案一次仅支持一个单一的输入类型,正常的手指触摸享有更高的优先级。如果屏幕上出现包括手写时手握手机或平板电脑的边缘、或手掌搁在屏幕上等正常的手指触摸,那么手写笔系统将无法正常工作。然而,这两种情况在大屏幕上使用手写笔时及其常见。为了便于使用,当手写笔在屏幕上工作时,必须排除这类误触误动作,从而提高用户的满意度。

触摸屏幕对手写笔性能造成影响的原因同样取决于信号差距。触摸屏幕会导致其信号扩散到多个传感器,而外围传感器通常在信号电平的手写笔区域。正常触摸的信号电平要远远高于手写笔的信号电平。这就好像在黑暗的房间里有两只手电筒,一只很亮,一只很暗。手电筒光越强,就越难以看到较暗的手电筒。此外,正常触摸也会产生共模噪声。所以,如果噪声较大的触摸和手写笔共享相同的传感器接收器,那么手写笔的输入将很难检测到。

这些共模噪声问题是另外一大领域的问题。通常情况下,我们可通过仅扫描所关心的特定传感器以隔离无源手写笔的所需信号来解决这个问题。这时我们假设最初能检测到手写笔,并跟踪手写笔在屏幕上的移动,因而使手写笔的第一次触摸最为薄弱。然而,一旦传感器子集跟踪到手写笔,大多数令人烦扰的触摸问题就都能迎刃而解。

虽然上述大多数问题似乎很难解决,但目前触摸控制器的发展使我们拥有的产品不但具备足以检测小型尖头无源手写笔的敏感度、而且还具备过滤屏幕上噪声和其它干扰对象的智能功能。从用户角度上讲,智能触摸控制器能处理检测和跟踪触摸对象的众多输入相关问题。从系统层面上讲,成功的关键在于开发出相关应用,让用户能够更好地在自己的设备上使用、创建和控制程序,从而提高工作效率,带来更加自然的操控体验。