我对雾计算的第一个实现是在石油和天然气管道项目中。该管道生成了数TB的数据,我们创建了一个雾网络,该雾网络具有适当的雾节点来计算数据。
从那时起,我从实施雾网络中学到的东西:
它不是很简单,您需要了解和理解很多事情。构建软件或我们在物联网中的工作更加直接和开放。此外,当您将网络作为障碍时,它会减慢你的速度。
这样的实现需要一个非常大的团队和多个供应商。
Open Fog及其对雾计算的影响
Open Fog(https://www.openfogconsortium.org/)计算框架用于雾计算体系结构。它提供:
用例
试验台
技术规格
以及参考体系结构
3. 物联网的边缘计算(Edge Computing)
物联网捕获微交互并尽可能快地响应。边缘计算使我们最接近数据源,并允许我们在传感器区域应用机器学习。边缘与雾计算的区别是,边缘计算完全是传感器节点的智能,而雾计算仍然是可以为数据繁重的操作提供计算能力的局域网。
微软和亚马逊等行业巨头已经发布了Azure IoT Edge和AWS Green Gas,以促进具有出色计算能力的IoT网关和传感器节点上的机器智能。这些都是使您的工作变得非常轻松的出色解决方案,但它极大地改变了我们从业人员了解和使用的边缘计算的含义。
4. 物联网的MIST计算
我们看到我们可以做以下事情来促进物联网的数据处理和智能化:
基于云的计算模型
基于雾的计算模型
边缘计算模型
我们可以简单地引入IoT设备的网络功能并分配工作负载,利用雾和边缘计算都无法提供的动态智能模型。这种计算类型,可补充雾和边缘计算,并使它们变得更好。
建立这种新的模式可以从内存大小为256kb、每秒数据传输速率约为100kb的设备中实现高速数据处理和智能提取。
我不敢说这个技术模型已经足够成熟,可以帮助我们处理物联网计算模型。但对于Mesh网络,我们肯定会看到这样一个计算模型的促进者。
就个人而言,我已经花了一些时间在实验室中实施基于MIST的PoC,而我们要解决的挑战是分布式计算模型及其治理。但是,我100%确信,很快有人会提出一个更好的基于MIST的模型,我们所有人都可以轻松使用和使用。
关于物联网就介绍完了,您有什么想法可以联系小编。