今天小编要和大家分享的是波导缝隙天线串联缝隙阵 波导缝隙天线天线性能,接下来我将从波导缝隙天线串联缝隙阵,波导缝隙天线天线性能,波导缝隙天线仿真结果,波导缝隙天线结束语,这几个方面来介绍。

波导缝隙天线串联缝隙阵 波导缝隙天线天线性能

波导缝隙天线自上世纪中叶以来有了很大的发展,广泛用于地面、舰载、机载、导航等各个领域。由于缝隙阵列天线对天线口径面内的幅度分布容易控制,口径面利用率高,体积小,易于实现低或极低副瓣等特点,因而使其获得广泛使用。在波导缝隙天线的研究方面,许多学者对缝隙天线理论和实验进行了大量基础性的研究工作,因而波导缝隙天线的理论越来越成熟。本文所设计的就是基于车载雷达系统应用的一种小型波导缝隙天线。该天线要求在水平面内具有宽波束的特点,能够覆盖比较宽的范围,从而更有效地提高车辆的战场生存能力。天线需要满足的性能指标如下:a.增益:大于11dB;b.3dB波束宽度:E面为20°,H面为110°;c.副瓣电平:小于-13dB;d.驻波比:小于2。

波导缝隙天线串联缝隙阵,波导缝隙天线天线性能,结束语等信息资料

波导缝隙天线串联缝隙阵

由波导内的场分布情况可知:当波导宽边中心开斜缝时,窄缝在纵向不切割电流线;在缝的横向由于对电场的扰动,使得总电场在缝的两侧发生跳变,即电压跳变,故相当于在传输线上串联了一个阻抗。对中心馈电的谐振线阵模型来说,假设波导壁上开有Ⅳ爪斜缝,缝与缝中心间距λg/2,为取得同相激励,相邻缝交叉倾斜放置,波导末端短路板距终端缝隙λg/2,以使缝隙中心处于电压或电流最大值位置.

波导缝隙天线天线性能

应用以上所计算出来的结果来进行天线的设计,还必须考虑缝隙间的互耦问题;若不考虑互耦,将使天线口径面的幅度分布和相位分布变坏,同时也将恶化天线的输入端匹配。近年来随着计算机辅助技术的飞速发展,在设计比较小的缝隙阵列时,通过仿真得到近场数据的近场诊断法越来越受到重视。在缝隙数为4的情况下,根据上面得出的参数,结合CST软件中参数扫描的功能,能够快速地找到准确的电参数,大大提高了设计的效率。

串联缝隙与纵向缝隙相比,由于其角度偏转的原因,其交叉极化辐射要比纵向缝隙高,这会带来副瓣电平的升高和增益的降低,仿真结果也证实了这一点,而这是我们在设计中所不希望看到的,需要采取措施抑制交叉极化辐射。在本设计中,采用在每个缝隙上方加一个小波导口的办法,小波导的传播方向垂直于缝隙所在的平面。在不增加其传播方向长度的情况下,通过控制小波导的宽边尺寸,使其截止波长小于缝隙在交叉极化方向上传播模的截止波长,来抑制交叉极化电平。为进一步降低交叉极化电平,同时也对主瓣波形进行调整,参照仿真结果,可在小波导口中间插入金属片来进一步减小其宽边尺寸,仿真结果表明,该方法能有效地降低交叉极化所带来的影响。

波导缝隙天线仿真结果

仿真中将缝长l和倾角β设置成变量,l的初始值取λ/2,利用CST的参数扫描功能,对缝隙长度和倾角进行扫描。通过设置合理的步长,能够加快扫描进度,减少计算时间。由于本设计采用的是同轴线中心馈电,需要考虑阻抗匹配的问题,否则会在与波导的连接处产生反射,影响天线的性能。根据λ/4阻抗变换的原理,在仿真中通过改变同轴线内导体探针的长度来进行匹配,观察端口模式当同轴线输入阻抗为50Ω时即认为达到了所需的效果,经过仿真得到同轴线内导体探针长度为8.5mm。

波导缝隙天线结束语

从应用目标的实际情况出发,利用波导宽边中心斜缝的形式设计了一款小型四元线阵天线,通过仿真分析,其各项性能参数都达到了规定的指标要求。并且由于体积小、稳定性好、能够满足实际应用的需要,在实际制作由于加工工艺等方面的原因会造成一定的误差,需要严格控制加工误差。

关于波导缝隙天线,电子元器件资料就介绍完了,您有什么想法可以联系小编。