今天小编要和大家分享的是RS232接口标准 RS232接口PC机扩展RS-232接口,接下来我将从RS232接口的标准,PC机扩展RS-232接口,RS-232接口的连线,RS232接口转USB接口的通信方法,这几个方面来介绍。

RS232接口标准 RS232接口PC机扩展RS-232接口

RS-232接口又称之为RS-232口、串口、异步口或一个COM(通信)口。"RS-232"是其最明确的名称。 在计算机世界中,大量的接口是串口或异步口,但并不一定符合RS-232标准,但我们也通常认为它是RS-232口。 严格地讲RS-232接口是DTE(数据终端设备)和DCE(数据通信设备)之间的一个接口,DTE包括计算机、终端、串口打印机等设备。DCE通常只有调制解调器(MODEM)和某些交换机COM口是DCE。标准指出DTE应该拥有一个插头(针输出),DCE拥有一个插座(孔输出)。这经常被制造商忽视(如:WYSE终端就是孔输出DTE串口)但影响不大,只要搞清楚DCE、DTE就行了,然后按照标准接线图接线就不会错了。

RS232接口标准,RS232接口PC机扩展RS-232接口,转USB接口的通信方法等信息资料

RS232接口的标准

目前RS232是pC与通信工业中应用最广泛的一种串行接口,RS代表推荐标准,232是标识号。RS232采取不平衡传输方式,即单端通信。一个完整的RS232接口有22根线,采用标准的25芯插头座。除此之外,目前广泛应用的还有一种9芯的RS232接口。它们的外观都是一个D形,对接的两个接口又分为针式和孔式两种。

RS232标准中定义了逻辑1和逻辑0电压级数,以及标准的传输速率和连接器类型。信号大小在正的和负的3~15V之间。RS232规定接近0的电平是无效的,逻辑1规定为负电平,有效负电平的信号状态称为传号(Marking),它的功能意义为OFF;逻辑0规定为正电平,有效正电平的信号状态称为空号(Spacing),它的功能意义为ON。

在RS232标准中规定的设备可以分为数据终端设备(DTE)和数据通信设备(DCE)两类,这种分类定义了不同的线路用来发送和接收信号。一般来说,计算机和终端设备有DTE连接器,调制解调器和打印机有DCE连接器。

本文采用被广泛使用的9芯RS232接口进行数据采集。

表所示为在pC机、调制解调器和路由器等网络设备中使用的9芯RS232接口的信号和管脚分配。

pC机扩展RS-232接口

1.pC机串口的RTS和DTR及扩展电路

RTS和DTR是pC机中8250芯片的MODEM控制寄存器的两个输出引角D1和D0位,口地址为COM1的是3FCH,口地址为COM2的是2FCH。我们可以利用对MODEM控制寄存器3FCH或2FCH的写操作对其进行控制。从而利用该操作和扩展电路实现对TXD和RXD进行多线扩展,是其扩展电路。在pC机串口扩展电路中,74LS161是二进制计数器,1脚是清0端,2脚是计数端,计数脉冲为负脉冲信号,4051是八选一双向数字/模拟电子开关电路,其中一片用于正向输出,一片用于反向输出。该扩展电路工作原理是通过控制pC机串口的DTR输出的高低电平来形成74LS161的p2脚计数端的负脉冲信号,使161的输出端p14(QA)、p13(QB)、p12(QC)、p11(QD)脚依次在0000到1111十六个状态中变化,本电路仅使用了QA、QB、QC三个输出来形成对4051的ABC控制,最终使得4051(1)的输入端TXD依次通过与TX1~TX8导通而得到输出信号,4051(2)的输出端RXD与RX1~RX8依次导通形成输入信号。由于RXD和TXD的导通是一一对应的,因此串口通信就可以依次通过与多达8个带有三线基本串口的外部设备进行通信传输以实现数据传送。pC机端的电平转换电路是将RS232电平转换为TTL电平,外设端的电平转换电路是将TTL电平转换为RS232电平。。

2.电路使用程序对pC机串口COM1的编程如下:

对COM1口的波特率等设置;MOVDX,3FCHMOVAL,XXXXXX01BOUTDX,AL;D1生成RTS负脉冲,对74LS161输出端清0MOVAL,XXXXXX11B;OUTDX,AL;4051的RX1和TX1导通CALLCOM;调用通信子程序,与第一个外部设备通信;MOVCX,7;设置循环计数器;NEXT:MOVDX,3FCHMOVAL,XXXXXX10BOUTDX,AL;D0位生成DTR的负脉冲,形成161的p2脚计数脉冲MOVAL,XXXXXX11BOUTDX,AL;RX2和TX2导通CALLCOM;调用通信子程序,与第二个外部设备通信LOOpNEXT;循环与另外6个外部设备通信;3.使用说明

由于该扩展的多路接口在通信时共用一个子程序,因此在与某一路导通时,系统只能与这一路的外部设备进行通信联络。如果工作现场需要立即和某一路通信,则需要对3FCH的D1位执行两个写操作并在RTS脚形成负脉冲,以对7416I清0后,再连接执行若干次对DTR的两次写操作。例如想对第4路外设通信,则需要执行完成对74LS161清0后,再连续三次对3FCH的D0位进行两个写操作以形成DTR脚的负脉冲,然后即可调用通信子程序。如需使用pC机的COM2串口,只需将程序中的3F8H~3FDH全部换成2F8H~2FDH即可。如果使用十六选一双向数字/模拟电子开关电路,可将74LS161的QA、QB、QC、QD四个输出端接至电子开关的四个控制端A、B、C、D,这样就可以达到一个pC机的RS232口与16个带有串口的外设的数据通信。

RS-232接口的连线

RS-232接口又称之为RS-232口、串口、异步口或一个COM(通信)口。"RS-232"是其最明确的名称。在计算机世界中,大量的接口是串口或异步口,但并不一定符合RS-232标准,但我们也通常认为它是RS-232口。严格地讲RS-232接口是DTE(数据终端设备)和DCE(数据通信设备)之间的一个接口,DTE包括计算机、终端、串口打印机等设备。DCE通常只有调制解调器(MODEM)和某些交换机COM口是DCE。标准指出DTE应该拥有一个插头(针输出),DCE拥有一个插座(孔输出)。这经常被制造商忽视(如:WYSE终端就是孔输出DTE串口)但影响不大,只要搞清楚DCE、DTE就行了,然后按照标准接线图接线就不会错了。(DTE、DCE引脚定义相同)

接口的电气特性在RS-232-C中任何一条信号线的电压均为负逻辑关系。即:逻辑“1”,-5—-15V;逻辑“0”+5—+15V。噪声容限为2V。即要求接收器能识别低至+3V的信号作为逻辑“0”,高到-3V的信号作为逻辑“1”

接口的物理结构RS-232-C接口连接器一般使用型号为DB-25的25芯插头座,通常插头在DCE端,插座在DTE端.一些设备与pC机连接的RS-232-C接口,因为不使用对方的传送控制信号,只需三条接口线,即“发送数据”、“接收数据”和“信号地”。所以采用DB-9的9芯插头座,传输线采用屏蔽双绞线。

传输电缆长度由RS-232C标准规定在码元畸变小于4%的情况下,传输电缆长度应为50英尺,其实这个4%的码元畸变是很保守的,在实际应用中,约有99%的用户是按码元畸变10-20%的范围工作的,所以实际使用中最大距离会远超过50英尺,美国DEC公司曾规定允许码元畸变为10%而得出附表2的实验结果。其中1号电缆为屏蔽电缆,型号为DECp.NO.9107723内有三对双绞线,每对由22#AWG组成,其外覆以屏蔽网。2号电缆为不带屏蔽的电缆。型号为DECp.NO.9105856-04是22#AWG的四芯电缆。附表2DEC公司的实验结果。

RS232接口转USB接口的通信方法

USB作为一种新的pC机互连协议,使外设到计算机的连接更加高效、便利。这种接口适合于多种设备,不仅具有快速、即插即用、支持热插拔的特点,还能同时连接多达127个设备,解决了如资源冲突、中断请求(IRQs)和直接数据通道(DMAs)等问题。因此,越来越多的开发者欲在自己的产品中使用这种标准接口。而RS232是单个设备接入计算机时,常采用的一种接入方式,其硬件实现简单,因此在传统的设备中有很多采用了这种通信方式。一般的IC卡门禁考勤系统也使用RS232接口与pC机通信。如果将USB技术应用于IC卡门禁考勤系统与pC机之间的数据通信,这样,不仅能使IC卡门禁考勤设备具备USB通信的诸多优点,而且对pC机而言还可以节余1个RS232串口为其它通信所用。

1USB系统概述

USB规范描述了总线特性、协议定义、编程接口以及其它设计和构建系统时所要求的特性。USB是一种主从总线,工作时USB主机处于主模式,设备处于从模式。USB系统所需要的唯一的系统资源是,USB系统软件所使用的内存空间、USB主控制器所使用的内存地址空间(I/O地址空间)和中断请求(IRQ)线。USB设备可以是功能性的,如显示器、鼠标或者集线器之类。它们可以作低速或者高速设备实现。低速设备最大速率限制在1.5Mb/s,每一个设备有一些专有寄存器,也就是端点(endpoint)。在进行数据交换时,可以通过设备驱动间接访问它。每一个端点支持几种特殊的传输类型,并且有一个唯一的地址和传输方向。不同的是端点0仅用作控制传输,并且其传输可以是双向的。

系统上电后,USB主机负责检测设备的连接与拆除、初始化设备的列举过程,并根据设备描述表安装设备驱动后自动重新配置系统,收集每个设备的状态信息。设备描述表标识了设备的属性、特征并描述了设备的通信要求。USB主机根据这些信息配置设备、查找驱动,并且与设备通信。

典型的USB数据传输是由设备驱动开始的,当它需要与设备通信时,设备驱动提供内存缓冲区,用来存放设备收到或者即将发送的数据。USB驱动提供USB设备驱动和USB主控制器之间的接口,并将传输请求转化为USB事务,转化时需要与带宽要求及协议结构保持一致。某些传输是由大块数据构成的,这时需要先将它划分为几个事物再进行传输。

具有相似功能的设备可以组成一类,这样便于分享共有的特性和使用共同的设备驱动程序。每个类可以定义其自己的描述符,如:HID类描述符和Report描述符。HID类是由人控制计算机系统的设备组成的,它定义了一个描述HID设备的结构,并且表明了设备的通信要求。HID设备描述符必须支持端点输入中断,固件也必须包括一个报告描述符,表明接收和发送数据的格式。在IC卡门禁考勤系统引入RS232到USB的接口转换模块后,从系统所具有的特性来看,应该属于HID设备。因此,两种特殊的HID类请求必须被支持:SetReport和GetReport。这些请求使设备能接收和发送一般的设备信息给主机。在没有中断输出终端时,SetReport是主机发送数据给HID设备的唯一方式。

2系统要求

为了实现IC卡门禁考勤系统中RS232-USB的接口转换,需要1台支持USB的主机,同时还要提供主机上用于与外设通信的驱动,一般由操作系统提供。此外,还需开发在主机上执行的客户端应用程序。在设备端,需要提供具有USB接口的主控制器芯片,以及编写主控制器上执行的USB通信代码和用于执行外设功能的相关代码。

2.1主机要求

主机必须能够通过设备驱动接收USB数据,并且使这些数据对处理这些请求的应用程序有效。在主机中必须有一个驱动负责处理USB传输、辨识设备、向USB设备收发数据;同时,还需要有一个设备驱动-虚拟化串行口,仿效真实的串口。这个驱动必须能够像真实的串口接收和发送USB数据。

从应用的观点,设备驱动必须能收发数据,可以通过使用一个虚拟化的串口或通过转化为USB数据实现。微软提供了一个叫作USBpOS的设备驱动,它允许应用程序访问USB设备时,好像它们连接到标准串口上一样。系统大致结构方框图如图1所示。

2.2设备要求

在定义即将使用的微控制器时,必须说明一些通信要求,如:通信速率、频率、传输的数据量等。考虑到IC卡门禁考勤系统有效的通信速率,可以把转换器作为一个低速的设备使用,低速设备通信速度可以在10~100Kb/s的范围变化。考虑到传输的数据量和传输的频率,此系统中使用中断的传输类型。中断传输可以在2个方向进行,但不能同时进行,这种类型的传输要求在规定的时间里完成相当大数据量的传输任务。

对于转换模块,它可以用于pC机的数据收发,操作系统提供了HID驱动,允许使用中断传输模式。对于低速设备的一个事务,中断传输最大的包容量是8字节,如果需要发送大量的数据,则必须把它分割为很多事务。

转换模块要定义的另一个特性是所需端点数。如上所述,端点是微控制器在USB通信过程中所用来发送和接收数据的缓冲区。此系统中,该转换器定义了2个端点:一个端点(端点0)用来控制传输,另一个端点是中断输入端点,定义为发数据给pC机。

根据以上要求,通过研究比较现有的微控制器,考虑到如内存空间、价格和开发包等因素,我们选用Cypress家族的一种8位RISC微控制器CY7C634XX/5XX。它使用哈佛总线结构,是对较高I/O要求的低速应用设备的低价解决方案。

图2为IC卡门禁考勤系统USB通信实现硬件方框原理图。

3软件设计和执行

系统软件由6部分组成:定义描述符、设备检测和列举、端点中断服务程序、USB数据交换模块、串行口数据交换模块、USB/Serial模块接口。下面简要描述其中部分模块程序的功能和实现思想。

3.1描述符定义

描述符是数据结果或信息的格式化块,它可以使主机知道这个设备。每个描述符包含了这个设备整体的信息或者某个元素的信息。所有的USB外设必须响应对标准的USB描述符的请求。

该系统中使用了1个接口和2个终端(控制和中断输入)。由于受Win98的限制还不能使用中断输出终端,因此为了解决这个问题,我们通过在端点0中使用SetReport传输pC机欲送往IC卡门禁考勤设备的数据。

数据接收是在OutputReports中完成的。它根据送往IC卡门禁考勤设备最大的数据量,系统定义为16K个8位域。发送数据给主机是在输入报告中完成的,它是8K个8位域。

3.2设备检测和列举

当1个USB人机接口类(HID)设备第一次连接到总线,它将被总线供电但仍然非功能性等待1个总线复位。D-端的上拉电阻通知Hub连接上了新的设备,主机也同时知道了新连接的USB设备,并将它复位。紧跟输入包之后,主机发送1个配置包,从缺省地址0处读取设备描述符。读到描述符后,主机将分配一个新的地址给设备,并继续查询关于设备描述、配置描述、人机报告描述的信息,设备将开始对新分配的地址作出反应。根据从设备处返回的信息,主机知道了被设备支持的数据终端的数量,完成列举过程。列举结束后,Windows将把新的设备加入到控制面板的设备管理器中显示。

为此,在微控制器中必须写入访问描述符的代码,这样便于对主机在列举设备时发送的请求作出有效的辨识和响应。在设备方面需要创建一个INF文件,使Windows能够辨识设备,并且为设备找到其驱动。由于操作系统提供了简单的INF文件,因此,开发中只需要编写写入到微控制器中的程序。

3.3数据发送和接收过程

发送数据到门禁考勤系统是通过控制端点0中使用SetReport来完成的。主机先向门禁考勤系统请求发送数据,设备响应请求后,主机便开始执行。当有数据到达设备的终端0时,将对设备产生一个中断。此时,相应的中断服务程序便将数据复制到数据缓冲区。一旦进入端点0的中断服务程序,所有的中断必须关闭,确保能够正确地复制数据。

微处理器的数据缓冲区编程为可以接收64个字节,这个值是存放在设置包的包头请求信息中。从主机处接收到的最大包大小,是根据它将发送给门禁考勤系统的最大数据量来决定的。

系统还使用了put_command线程,通过1个I/O端口引脚,向门禁考勤系统串口发送数据。在执行此线程时,根据串口通信协议插入了起始位、停止位以及相应的延时。

从门禁考勤系统接收数据的过程是利用端点1完成的。端点1配置为1个中断输入端点,当有1个起始位到达引脚时,GpIO中断必须打开,并关闭所有其它类型中断。设计中通过使用1个Get_Serial线程来收集I/O引脚发出的串行数据,并把它存入数据缓冲区。同时该线程负责检验接收到的起始位和停止位的正确性。当收到8个字节时,将接收缓冲区中的数据复制到终端1的缓冲区,并且允许微处理器响应中断输入请求。

考虑到一般串行口的有效波特率的范围在300~19200bps,我们按处于最大波特率19200bps的情况来考虑,传输1个字符需要时间接近0.75ms;而1个输入中断大约每10ms送1个8字节的数据包,因此,设计1个128字节的快速数据缓冲区便可以保证不会丢失数据。

RS232-USB接口转换模块用于改进我们的IC卡门禁考勤系统,使用效果良好。

关于RS232接口,电子元器件资料就介绍完了,您有什么想法可以联系小编。