今天小编要和大家分享的是车载电源转换器使用知识 车载电源转换器车载逆变器使用注意,接下来我将从车载电源转换器的使用知识,车载逆变器使用注意,CRT车载电源转换器系统开关电源的设计,这几个方面来介绍。
车载电源转换器(又换电源逆变器、Power Inverter)是一种能够将 DC12V或DC24V或DC36V或DC48V直流电转换为和市电相同的 AC220V或AC110V 交流电,供一般电器使用,是一种方便的车用电源转换器。车载电源转换器在国外市场受到普遍欢迎。在国外因汽车的普及率较高,外出工作或外出旅游即可用车载电源转换器连接蓄电池带动电器及各种工具工作。中国进入WTO 后,国内市场私人交通工具越来越多,因此,车载电源转换器作为在移动中使用的直流变交流的转换器,会给你的生活带来很多的方便,是一种常备的车用汽车电子装具用品。通过车载电源转换器点烟器输出的可以是 75W 、100W 、150W 、3000W 直到3000W 等功率规格的。300W以上功率车载电源转换器要通过连接线接到电瓶上。把家用电器连接到车载电源转换器的输出端就能在汽车内使用各种电器象在家里使用一样方便。可使用的电器有:手机、笔记本电脑、数码摄像机、照像机、照明灯、电动剃须刀、 CD 机、游戏机、掌上电脑、电动工具、车载冰箱及各种旅游、野营、医疗急救电器等。
车载电源转换器的使用知识
先要选择专业的正规的工厂生产或经销代理的车载逆变器产品。在国内有些用户为图方便将一些DC直流电器如:手机充电器、笔记本电脑等在车上不使用自身配的220V电源而配上简易转接器直接插到点烟器上,这样是不对的,汽车的电瓶电压不稳,直接取电可能会烧毁电器很不安全而且会大大影响电器使用寿命,因为原厂家供应的220V电源是厂家专为其电器设计的,有极好的稳定性。
另外,在购买时要查看车载逆变器是否有各种保护功能,这样才能保证电瓶和外接电器的安全。还要注意车用逆变器的波形,方波的转换器会造成供电不稳定,可能损伤所使用的电器,所以最好选正弦波或修正正弦波形的最新型的车载逆变器。
车载逆变器使用注意
1.拔下连续使用中的电器插头时,务必先确认使用电器的开关是否已拨在”关”上,然后再拔掉电源插头。并拔下车载逆变器。
2.更换车载逆变器的保险丝时请务必使用同一型号、规格的保险丝,使用指定规格以外的保险丝或金属丝会引起异常过热和火灾。
3.请及时清理车用逆变器插头处脏物,以免引起转换器接触不良或异常过热。
4.使用后或不使用车载逆变器时,请从雪茄头插座上拔下本品并妥善保管。请严格遵守使用电器上的注意事项使用本品。
CRT车载电源转换器系统开关电源的设计
目前世界各国正在研究48VDC汽车用电源系统,欧共体计划从2008年开始采用48VDC电源系统。如何在48VDC电源系统下兼容12VDC电子设备成为了一个课题。通过线性稳压电源实现48VDC/12VDC的转换会产生很大的功率损耗,缺点明显。
本文提出了一种具有过载和短路保护的车载电源系统的开关电源设计方案。该方案采用单端反激式结构实现48VDC/12VDC的转换,输出电压稳定,波纹小,不间断,性能可靠且电源损耗小。
UC3842的保护电路设计
1、UC3842的典型应用
UC3842是高性能的单端输出式电流控制型脉宽调制(pWM)芯片,其典型应用电路如图1所示。
2、过载保护原理分析
当出现输出短路时,输出电压会下降,同时为UC3842供电的反馈绕组也会出现输出电压下降。当输入电压低于10V时,UC3842停止工作,开关管截止。短路现象消失后,电源重新启动,自动恢复正常工作。但由于在高频关断的时候会出现很高的尖峰电压,即使占空比很小的情况下,电路中7脚的输入电压也可能不会降到足够低,过载保护电路并不总能有效的响应所出现的过载情况,对整个系统的性能会产生不良的影响,存在着一定的安全隐患。
3、过流保护原理分析
当电流取样端3脚上的电压值超过电流检测比较器负端的电压时,可以使脉宽调制锁存器输入复位信号,开关管于是被关闭。这样峰值检测电路限制输出的最大电流,起到了一定的保护作用。
但是随着开关频率的升高,可能会出现开关电源处于连续模式下,也就是每个开关周期的初级电感电流是从一定的幅度开始增长,这样会产生分谐波振荡。这种不稳定性和稳压器的闭环特性无关,它是由固定频率和峰值电流取样同时工作引起的。图2说明了这样的现象。
如图2所示,在t0时刻,开关管被导通,这时初级线圈电流以斜率m1上升,该斜率是输入电压和电感的函数。在t1时刻,电流取样输入到达了电流检测比较器的门限,将导致开关管关闭,电流以斜率m2衰减,直到下一个开关周期的到来。如果有一个扰动加在电流检测比较器的门限电压上,产生了一个小的△I(如图2中虚线所示),就会发生不稳定的现象。在一个固定的振荡周期内,电流衰减时间减少,最小电流在开关管导通时刻(t2)上升了△I+m2/m1。最小电流在下一个周期(t3)减小到(△I+m2/m1)?(m2/m1)。
每一个后续的开关周期内,该扰动都会与(m2/m1)相乘,在几个开关周期交替增加和减小初级线圈电流,也许若干个开关周期后电流会减小到零,使这个过程重新开始。如果m2/m1大于1,系统将不稳定。
4、保护电路的改进
如图3所示,本设计针对UC3842典型应用电路的过流、过载保护电路做出以下改进。
在反馈绕组的整流二极管回路串一个电阻,它和电容C2组成RC滤波网络,对开关管开通瞬间时的尖峰电压起到了滤除的作用。这样,由于尖峰电压的减少,当短路现象发生时,反馈绕组输出的电压会有效的降低,UC3842会停止工作直到短路现象解除。
对过流保护电路进行斜率补偿。补偿斜率从RT、CT振荡器产生,加到电压反馈端,以提高误差放大器输出的斜率补偿。如图3所示,误差放大器的输出是具有m3斜率的斜坡,经过两个二极管后被电阻分压,然后输入到电流检测比较器的负端作为过流保护电路的控制电压。这样通过电流检测比较器和脉宽调制锁存器的配置保证了在任何一个振荡器周期中只有一个单脉冲出现在输出端。当出现过载或者输出电压取样丢失等异常工作情况,内部比较门限会被限定在1V,而不会出现电路失调的情况。
图4显示了通过在控制电压上增加一个与脉宽调制时钟同步的人为的斜坡,可以在后续的开关周期有效的抑制由于△I扰动而引起的不稳定。该补偿斜坡的斜率(m3)必须等于或者大于m2/2才具有稳定性。通过m3斜率的补偿,初级线圈电流会被控制电压所抑制,紧跟控制电压的幅度。
实验结果
表1为输入电压在30~50V波动时,输出电压的波动情况,表2是负载电流在10~500mA变化时,输出电压的波动情况。由表1的数据可得到电压调整率Sv<0.3[%]。由表2的数据可得到输出电阻Ro<0.4Ω。
结论
本文所提出的是一种结构简单、性能稳定的单端反激式结构开关电源设计方案。由于采用了“斜率补偿”的过流保护方式,性能更加稳定可靠,电压调整率低、输出电阻小、纹波低,功率损耗低,系统安全系数高,实现对车载电源系统的供电,对提高汽车整体性能大有益处。本设计已经成功应用于武汉理工大学智能信息系统研究所自行设计的车用直流无刷电机控制器的电源系统中。
同时,本文所提出的DC/DC方案也适用于其他直流供电电源的应用设计。由于其性能稳定,纹波小,对采用微控制器的数字控制系统的供电电源设计有一定的借鉴意义。
关于车载电源转换器,电子元器件资料就介绍完了,您有什么想法可以联系小编。