今天小编要和大家分享的是EMI滤波器设计原理 EMI滤波器性能指标,接下来我将从EMI滤波器的设计原理,EMI滤波器的性能指标,EMI滤波器的元件选择,这几个方面来介绍。

EMI滤波器设计原理 EMI滤波器性能指标

EMI滤波器的设计原理随着电子设计、 计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。电磁干扰滤波器(EMI Filter)是近年来被推广应用的

EMI滤波器设计原理,EMI滤波器性能指标,

EMI滤波器的设计原理

随着设计、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。

电磁干扰滤波器(EMIFilter)是近年来被推广应用的一种新型组合器件。它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。

1电磁干扰滤波器的构造原理及应用

1.1构造原理

电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。若从形成特点看,噪声干扰分串模干扰与共模干扰两种。串模干扰是两条电源线之间(简称线对线)的噪声。共模干扰则是两条电源线对大地(简称线对地)的噪声。因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。此外,电磁干扰滤波器就对串模、共模干扰都起到抑制作用.

1.2基本电路及其典型应用

电磁干扰滤波器的基本电路如图1所示。

该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地。电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。L的电感量与的额定电流I有关,参见表1。需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能承受较大的电流。此外,适当增加电感量,可改善低频衰减特性。C1和C2采用薄膜的中点接地,能有效地抑制共模干扰。C3和C4亦可并联在输入端,仍选用陶瓷电容,容量范围是2200pF~0.1μF。为减小漏电流,电容量不得超过0.1μF,并且电容器中点应与大地接通。C1~C4的耐压值均为630VDC或250VAC。

图2示出一种两级复合式EMI滤波器的内部电路,由于采用两级(亦称两节)滤波,因此滤除噪声的效果更佳。针对某些用户现场存在重复频率为几千赫兹的快速瞬态群脉冲干扰的问题,国内外还开发出群脉冲滤波器(亦称群脉冲对抗器),能对上述干扰起到抑制作用。

2EMI滤波器在开关电源中的应用

为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路图3所示。图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,图(b)则接到输出端。图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。图(d)则是把共模干扰滤波电容C3和C4接在输出端。

EMI滤波器能有效抑制单片开关电源的电磁干扰。图4中曲线a为加EMI滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。曲线b是插入如图3(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV~70dBμV。显然,这种EMI滤波器的效果更佳。

针对某些用户现场存在重复频率为几千赫兹的快速瞬态群脉冲干扰的问题,国内外还开发出群脉冲滤波器(亦称群脉冲对抗器),能对上述干扰起到抑制作用。

2EMI滤波器在开关电源中的应用

为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路图3所示。图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,图(b)则接到输出端。图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。图(d)则是把共模干扰滤波电容C3和C4接在输出端。

EMI滤波器能有效抑制单片开关电源的电磁干扰。图4中曲线a为加EMI滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。曲线b是插入如图3(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV~70dBμV。显然,这种EMI滤波器的效果更佳。

3EMI滤波器的技术参数及测试方法

3.1主要技术参数

EMI滤波器的主要技术参数有:额定电压、额定电流、漏电流、测试电压、绝缘电阻、直流电阻、使用温度范围、工作温升Tr、插入损耗AdB、外形尺寸、重量等。上述参数中最重要的是插入损耗(亦称插入衰减),它是评价电磁干扰滤波器性能优劣的主要指标。

插入损耗(AdB)是频率的函数,用dB表示。设电磁干扰滤波器插入前后传输到负载上的噪声功率分别为p1、p2,有公式:

AdB=10lg(p1/p2)(1)

假定负载阻抗在插入前后始终保持不变,则p1=V12/Z,p2=V22/Z。式中V1是噪声源直接加到负载上的电压,V2是在噪声源与负载之间插入电磁干扰滤波器后负载上的噪声电压,且V2<<V1.代入(1)式中得到:

AdB=20lg(V1/V2)(2)

插入损耗用分贝(dB)表示,分贝值愈大,说明抑制噪声干扰的能力愈强。鉴于理论计算比较烦琐且误差较大,通常是由生产厂家进行实际测量,根据噪声频谱逐点测出所对应的插入损耗,然后绘出典型的插入损耗曲线,提供给用户。图5给出一条典型曲线。由力疔见,该产品可将1MHz~30MHz的噪声电压衰减65dB。

计算EMI滤波器对地漏电流的公式为:

ILD=2πfCVc(3)

式中,ILD为漏电流,f是电网频率。以图1为例,f=50Hz,C=C3+C4=4400pF,Vc是C3、C4上的压降,亦即输出端的对地电压,可取Vc≈220V/2=110V。由(3)式不难算出,此时漏电流ILD=0.15mA。C3和C4若选4700pF,则C=4700pF×2=9400pF,ILD=0.32mA。显然,漏电流与C成正比。对漏电流的要求是愈小愈好,这样安全性高,一般应为几百微安至几毫安。在电子医疗设备中对漏电流的要求更为严格。

需要指出,额定电流还与环境温度TA有关。例如国外有的生产厂家给出下述经验公式:

I=I1×[(85-TA)/45的根据2次方]

式中,I1是40℃时的额定电流。举例说明,当TA=50℃时,I=0.88I1;而当TA=25℃时,I=1.15I1。这表明,额定电流值随温度的降低而增大,这是由于散热条件改善的缘故。

3.2测量插入损耗的方法

测量插入损耗的电路如图6所示。e是噪声信号发生器,Zi是信号源的内部阻抗,ZL是负哉阻抗,一般取50Ω。噪声频率范围可选10kHz~30MHz。首先要在不同频率下分别测出插入前后负载上的噪声压降V1、V2,再代入(2)式中计算出每个频率点的AdB值,最后绘出插入损耗曲线。需要指出,上述测试方法比较烦琐,每次都要拆装EMI滤波器。为此可用电子开关对两种测试电路进行快速切换。

EMI滤波器的性能指标

EMI滤波器最重要的技术指标是对干扰的抑制能力,常常用所谓的插入损耗(InsertionLoss)来表示,它的定义是:没有接入滤波器时从干扰源传输到负载的功率p1和接入滤波器后从干扰源传输到负载的功率p2之比,用分贝(dB)表示。

EMI滤波器的插入损耗与滤波网络的网络参量以及源端和负载端的阻抗有关。为避免滤除有用信号,插损指标须谨慎提出。不论是军用还是民用EMC标准,对设备或分系统的电源线传导干扰电平都有明确的规定,预估或测试获得的EMI传导干扰电平和标准传导干扰电平之间的差值即所需的EMI滤波器的最小插损。然而,对不同的单台设备都进行EMC测试,而后分析其传导干扰特性,设计合乎要求的滤波器,这在实际工程中显然是不可能的。事实上,国家标准中规定了电源滤波器插入损耗的测试方法。在标准测试条件下,一般军用电源滤波器应满足10kHz~30MHz范围内插入损耗30~60dB。工程设计人员只需要根据实际情况选择合适的滤波器。

EMI滤波器的元件选择

与一般的滤波器不同,EMI滤波器典型结构中电容使用了两种下标,接于相线和中线之间,称为差模电容,接于相线或中线与地之间,称为共模电容,下标X和Y不仅表明了它在滤波电路中的作用,还表明了它在滤波电路中的安全等级。在设计或选用滤波器时都必须充分考虑这两类电容的安全性能,因为它直接关系到滤波网络的安全性能。

1-1、差模电容器的选择

指的是应用于这样的场合:当电容失效后,不会导致电击穿现象,不会危及人生安全。

除了要承受电源相线与中线的电压之外,还要承受相线与中线之间各种干扰源的峰值电压。根据差模电容应用的最坏情况和电源断开的条件,电容器的安全等级又分为两个等级具体规定见表1。所以设计滤波器时应根据不同的应用场合来选择不同安全等级的电容器。

表1差模电容的分类

若差模电容器的安全性能(即耐压性能)欠佳,在上述的峰值电压出现时,它有可能被击穿,它的击穿虽然不危及人生安全,但会使得滤波器的功能下降或丧失。通常EMI滤波器的差模电容必须经过1500-1700V直流电压1分钟耐压测试。1-2、共模电容及其漏电流控制

用于电子设备电源的EMI滤波器共模滤波性能常常受到共模电容的制约。

电容即跨接在相线或中线与安全地之间的电容。接地的电流主要就是指流过共模电容的电流,由于流过电容的电流由电源电压,电源频率和电容值共同决定。

由于漏电流的大小对于人生安全至关重要,不同国家对不同电子设备接地漏电流都做了严格的规定。若对最大漏电流做出了规定,则需求出最大允许接地电容值。

另外,要求电容在电气和机械安全方面有足够的余量,避免在极端恶劣的条件下出现击穿短路的现象。因为这种电容要跟安全地相连,而设备的机壳也要跟安全地相连,所以这种电容的耐压性能对保护人生安全有至关重要的作用,一旦设备或装置的绝缘失效,可能危及到人的生命安全。因此电容要进行1500-1700V交流耐压测试1分钟。

2、滤波电感的选择

电感的取值、材料的选取原则从以下几个方面考虑:第一,磁芯材料的频率范围要宽,要保证最高频率在1GHz,即在很宽的频率范围内有比较稳定的磁导率;第二,磁导率高,但是在实际中很难满足这一要求,所以,磁导率往往是分段考虑的。磁芯材料一般是铁氧体或者铁粉芯,更好的材料如微晶等。

关于EMI滤波器,电子元器件资料就介绍完了,您有什么想法可以联系小编。