电子元器件常识_常用电子元器件的使用常识

电阻

电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。电阻在电路中的主要作用为分流、限流、分压、偏置等。

1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。

a、数标法主要用于贴片等小体积的电路,如:472 表示 47×100Ω(即4.7K); 104则表示100K

b、色环标注法使用最多,现举例如下:四色环电阻 五色环电阻(精密电阻)

2、电阻的色标位置和倍率关系如下表所示:

颜色 有效数字 倍率 允许偏差(%)

银色 / x0.01 ±10

金色 / x0.1 ±5

黑色 0 +0 /

棕色 1 x10 ±1

红色 2 x100 ±2

橙色 3 x1000 /

黄色 4 x10000 /

绿色 5 x100000 ±0.5

蓝色 6 x1000000 ±0.2

紫色 7 x10000000 ±0.1

灰色 8 x100000000 /

白色 9 x1000000000 /

电容

1、 电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性 主要是隔直流通交流。电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。容抗XC= 1/2πf c (f表示交流信号的频率,C表示电容容量) 电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。

2、 识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。电容的基本单位用法拉(F)表示,其它单位还有:毫法 (mF)、微法(uF)、纳法(nF)、皮法(pF)。其中:1法拉=103毫法=106微法=109纳法=1012皮法.容量大的电容其容量值在电容上 直 接标明,如10 uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF 数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF

3、电容容量误差

如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%。

晶体二极管

晶体二极管在电路中常用“D”加数字表示,如: D5表示编号为5的二极管。

1、 作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。正因为二极管具有上述特性,无 绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。电话机里使用的晶体二极管按作用可分为:整流二极管(如 1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。

2、识别方法:二极管的识别很简单, 小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极 (正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。

3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。

稳压二极管

稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。

1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。

2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。

常用稳压二极管的型号及稳压值如下表:

型号 1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761

稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V

电感

电感在电路中常用“L”加数字表示,如:L6表示编号为6的 电感。电感线圈是将绝缘的导线在绝缘的骨架上绕一定的圈数制成。直流可通过线圈,直流电阻就是导线本身的电阻,压降很小;当交流信号通过线圈时,线圈两端 将会产生自感电动势,自感电动势的方向与外加电压的方向相反,阻碍交流的通过,所以电感的特性是通直流阻交流,频率越高,线圈阻抗越大。电感在电路中可与 电容组成振荡电路。

电感一般有直标法和色标法,色标法与电阻类似。如:棕、黑、金、金表示1uH(误差5%)的电感。

电感的基本单位为:亨(H) 换算单位有:1H=103mH=106uH。

变容二极管

变容二极管是根据普通二极管内部 “PN结” 的结电容能随外加反向电压的变化而变化这一

原理专门设计出来的一种特殊二极管。

变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高

频信号上,并发射出去。在工作状态,变容二极管调制电压一般加到负极上,使变容二极管

的内部结电容容量随调制电压的变化而变化。

变容二极管发生故障,主要表现为漏电或性能变差:

(1)发生漏电现象时,高频调制电路将不工作或调制性能变差。

(2)变容性能变差时,高频调制电路的工作不稳定,使调制后的高频信号发送到对方被对

方接收后产生失真。

出现上述情况之一时,就应该更换同型号的变容二极管。

晶体三极管

晶体三极管在电路中常用“Q”加数字表示,如:Q17表示编号为17的三极管。

1、 特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有放大能力的特殊器件。它分NPN型和PNP型两种类型,这两种类型的三极管从工 作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。电话机中常用的PNP型三极管有:A92、9012、9015等型号; NPN型三极管有:A42、9014、9018、9013等型号。

2、晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。

场效应晶体管放大器

1、场效应晶体管具有较高输入阻抗和低噪声等优点,因而也被广泛应用于各种电子设备中。尤其用场效管做整个电子设备的输入级,可以获得一般晶体管很难达到的性能。

2、场效应管分成结型和绝缘栅型两大类,其控制原理都是一样的。如图1-1-1是两种型号的表示符号:

3、场效应管与晶体管的比较:

(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。

(2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

(3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。

(4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。

最常用的电子元件型号

整流二极管:

1N4001~1N4007 50V~1000~/1。0A 1N5391~1N5399 50V~1000V/1。5A 1N5400~1N5408 50V~1000V/3。0A

开关二极管:

1N4148 1N4150 1N4448

肖特基二极管:

1N5817~1N5819 20V~40V/1。0A 1N5820~1N5822 20V~40V/3。0A 1N60 1N60P小电流低压降

光电耦合器:

4N35 4N36 4N37

晶体三极管:

PNP:8550 9012 9015 A92

NPN:8050 9013 9014 9018

D/A转换器:

AD7520 AD7521 AF7530 AD7521

8位:DAC0830 DAC0832 (D/A )12位:AD7541 (D/A)

8位:ADC0802 ADC0803 ADC0804 ADC0831 ADC0832 ADC0834 ADC0838(A/D)

跨导运算变压器

CA3080 CA3080A OTA

BiMOS运算变压器:

CA3140 CA3140A

DB3 双向触发二极管

快恢复二极管:

FR101~FR107 50V~1000/1。0A

三位半A/D转换器:

ICL7106 ICL7107 ICL7116 ICL7117

载波稳零运算放大器:

ICL7650

CMOS电源电压变换器:

ICL7660/MAX1044

单片函数发生器:

ICL8038

通用计数器:

ICM7216 ICM7216B ICM7216D 10MHz

带BCD输出10MZ通用计数器:

ICM7226A ICM7226B

单/双通用定时器:

ICM7555 ICM7555

DTMF 收发器:

ISO2-CMOS MT8880C

JFET输入运算放大器:

LF351

FJET输入宽带高速双运算放大器:

LF353

三端可调电源:

LM117 LM317A LM317

低功耗四运算放大器:

LM124 LM124 LM324 LM2920

三端可调负电压调整器:

LM137 LM337

低功耗四电压比较器:

LM139 LM239 LM339 LM2901 LM3302

可关断开关电源

LM1575-3.3、 LM2575-3.3、LM2575HV-3.3、LM1575- 5.0、LM2575-5.0、LM2575HV-5.0、LM1575-12、LM2575-12、 LM2575HV-12、LM1575-15, LM2575-15、LM2575HV-15、LM1575- ADJ、LM2575-ADJ LM2576-3.3、LM2576HV-3.3、LM2576-5.0、LM2576HV- 5.0、LM2576-12、LM2576HV-12、LM2576-15、LM2576HV-15、 LM2576-ADJ

低功耗双运算放大器:

LM158 LM258 LM358 LM2904

低功耗双电压比较器:

LM193 LM293 LM393 LM2903

通用运算放大器:

LM201 LM301 LM741

精密电压 频率转换器:

LM231A LM231 LM331A LM331

微功耗基准电压二极管:

LM285 LM358

精密运算放大器:

LM308A

低压音频小功率放大器:

LM386

带温度稳定器精密电压基准电路:

LM299 LM399 LM3999

可调电压基准电路:

LM431

锁相环音频译码器:

LM657 LM657C

双低噪声音频功率放大器:

LM831 LM833

双定时LED电子钟电路:

LM8365

单片函数发生器;

MAX038 0。1~20MZ

5V电源多通道RS232驱动器/接收器:

MAX232

七路达林顿驱动器:

MC1413 MC1416

编码器/译码器:

MC145026 MC145027 MC145028

MC145023-5/8 RS232驱动器:

MC145403 MC145404 MC145405 MC145408

RS232驱动器/接收器:

MC145406 MC145407

四施密特可控线路驱动器:

MC1489 MC1489A SN55189 SN55189A SN75189 SN75189A

低功率调频发射系统:

MC2833

低功率调频窄频带接收器:

MC3362

双运算放大器:

MC4558

MC7800系列 1。0A三端正电压稳压器:

MC7805(5.0V)、 LM340-5(5.0V)、MC7806(6.0V)、MC7808 (8.0V)、MC7809(9.0V)、MC7812(12V)、LM340-12(12V)、 MC7815(15V)、LM340-15(15V)、MC7818(18V)、MC7824 (24V)

MC78L00系列 0。5A三端正电压稳压器:

MC78M05(5.0V)、MC78M06(6.0V)、MC78M08(8.0V)、MC78M09 (9.0V)、MC78M12(12V)、MC78M15(15V)、MC78M18(18V)、 MC78M20(20V)、MC78M24(24V)

MC78T00系列 3。0A正电压稳压器:

MC78T05(5.0V)、MC78T08(8.0V)、MC78T12(12V)、MC78T15 (15V)

MC7900系列 1。0三端负电压稳压器:

MC7905(5.0V)、MC7905.2(5.2V)、MC7906(6.0V)、MC7908 (8.0V)、MC7912(12V)、MC7915(15V)、MC7918(18V)、 MC7924(24V)

MC79L00系列 0。1A 三端负电压稳压器:

MC79L05(5.0V)、MC79L12(12V)、MC79L15(15V)、MC79L18 (18V)、MC79L24(24V)

MC79M00系列 0。5A 三端负电压稳压器:

MC79M05(5.0V)、MC79M08(8.0V)、MC79M12(12V)、MC79M15 (15V)

Microchip PIC 系列单片机RS232通讯应用:

3。579545MHZ--60HZ 17级分频振荡器:

MM5369

双向可控硅输出光电耦合器:

MOC3009 MOC3012 (250V) MOC3020 MOC3023 (400V)

DTMF双音频接收器:

MT8870C MT8870C-1

DTMF 收发器:

MT8888C

单时基电路:

NE555 NE555Y SA555 SE555

双时基电路:

NE556 SA556 SE556

音频压缩扩展器:

NE570 NE571 SA571

低电压飘移运算放大器:

OP07 OP77

低噪音精密运算放大器:

OP27

低噪音高精密运算放大器:

OP37

精密低电压微功耗运算放大器:

OP90

高效光电耦合器:

PC817 PC827 PC837 PC847

无线遥控发射编码器芯片:

PT2262

无线遥控接收解码器芯片:

PT2272

脉宽市制PWM:

SG2524 SG3524

电力线调制解诘器电路:

ST7537

音频功率放大器:

TDA1521/TDA1521Q 2×12W Hi-Fi

TDA2030 14W Hi-fi

TDA2616/TDA2616Q 2×12W Hi-Fi

FM 单片调频接收电路:

TDA7000T TDA7010T

FM MTS 单片调节器频接收电路:

TDA7021T

低电压锁相环立体解码器:

TDA7040T

低电压单/双声道功率放大器:

TDA7050

低功耗JFET输入运算放大器:

TL062 TL064

低噪声JFET输入运算放大器:

TL071 TL072 TL074

JFET输入宽带高速运算放大器:

TL081 TL082 TL084

脉宽调制PWM:

TL494

精密开关模式脉宽调制控制:

TL594

光电耦合器:

TLP521-1/TLP521-2/TLP521-4

PWM Switch:

TOP100/TOP101/TOP102/TOP103/TOP104 TOP200/TOP201/TOP202/TOP203/TOP204/TOP214 TOP209/TOP210

线性八外围驱动器阵列:

ULN2803 ULN2804

(八 路NPN达林顿连接晶体管阵系列特别适用于低逻辑电平数字电路(诸如TTL, CMOS或PMOS/NMOS)和较高的电流/电压要求之间的接口,广泛应用于计算机,工业用和消费类产品中的灯、继电器、打印锤或其它类似负载中。所有 器件具有集电极开路输出和续流箝位二极管,用于抑制跃变。ULN2803的设计与标准TTL系列兼容,而ULN2804 最适于6至15伏高电平CMOS或PMOS。

二级管的分类及特性

一、根据构造分类

半导体二极管主要是依靠PN结而工作的。与PN结不可分割的点接触型和肖特基型,也被列入一般的二极管的范围内。包括这两种型号在内,根据PN结构造面的特点,把晶体二极管分类如下:

1、点接触型二极管

   点接触型二极管是在锗或硅材料的单晶片上压触一根金属针后,再通过电流法而形成的。因此,其PN结的静电容量小,适用于高频电路。但是,与面结型相比 较,点接触型二极管正向特性和反向特性都差,因此,不能使用于大电流和整流。因为构造简单,所以价格便宜。对于小信号的检波、整流、调制、混频和限幅等一 般用途而言,它是应用范围较广的类型。

2、键型二极管

键型二极管是在锗或硅的单晶片上熔接或银的细丝而形成的。其特性介于点接触型二 极管和合金型二极管之间。与点接触型相比较,虽然键型二极管的PN结电容量稍有增加,但正向特性特别优良。多作开关用,有时也被应用于检波和电源整流(不 大于50mA)。在键型二极管中,熔接金丝的二极管有时被称金键型,熔接银丝的二极管有时被称为银键型。

3、合金型二极管

在N型锗或硅的单晶片上,通过合金铟、铝等金属的方法制作PN结而形成的。正向电压降小,适于大电流整流。因其PN结反向时静电容量大,所以不适于高频检波和高频整流。

4、扩散型二极管

在高温的P型杂质气体中,加热N型锗或硅的单晶片,使单晶片表面的一部变成P型,以此法PN结。因PN结正向电压降小,适用于大电流整流。最近,使用大电流整流器的主流已由硅合金型转移到硅扩散型。

5、台面型二极管

   PN结的制作方法虽然与扩散型相同,但是,只保留PN结及其必要的部分,把不必要的部分用药品腐蚀掉。其剩余的部分便呈现出台面形,因而得名。初期生产 的台面型,是对半导体材料使用扩散法而制成的。因此,又把这种台面型称为扩散台面型。对于这一类型来说,似乎大电流整流用的产品型号很少,而小电流开关用 的产品型号却很多。

6、平面型二极管

在半导体单晶片(主要地是N型硅单晶片)上,扩散P型杂质,利用硅片表面氧化膜的屏蔽作用,在N 型硅单晶片上仅选择性地扩散一部分而形成的PN结。因此,不需要为调整PN结面积的药品腐蚀作用。由于半导体表面被制作得平整,故而得名。并且,PN结合 的表面,因被氧化膜覆盖,所以公认为是稳定性好和寿命长的类型。最初,对于被使用的半导体材料是采用外延法形成的,故又把平面型称为外延平面型。对平面型 二极管而言,似乎使用于大电流整流用的型号很少,而作小电流开关用的型号则很多。

7、合金扩散型二极管

它是合金型的一种。合金材料是容易被扩散的材料。把难以制作的材料通过巧妙地掺配杂质,就能与合金一起过扩散,以便在已经形成的PN结中获得杂质的恰当的浓度分布。此法适用于制造高灵敏度的变容二极管。

8、外延型二极管

用外延面长的过程制造PN结而形成的二极管。制造时需要非常高超的技术。因能随意地控制杂质的不同浓度的分布,故适宜于制造高灵敏度的变容二极管。

9、肖特基二极管

   基本原理是:在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压 程度只有40V左右。其特长是:开关速度非常快:反向恢复时间trr特别地短。因此,能制作开关二极和低压大电流整流二极管。

二、根据用途分类

1、检波用二极管

   就原理而言,从输入信号中取出调制信号是检波,以整流电流的大小(100mA)作为界线通常把输出电流小于100mA的叫检波。锗材料点接触型、工作频 率可达400MHz,正向压降小,结电容小,检波效率高,频率特性好,为2AP型。类似点触型那样检波用的二极管,除用于检波外,还能够用于限幅、削波、 调制、混频、开关等电路。也有为调频检波专用的特性一致性好的两只二极管组合件。

2、整流用二极管

就原理而言,从输入交流中得到输出 的直流是整流。以整流电流的大小(100mA)作为界线通常把输出电流大于100mA的叫整流。面结型,工作频率小于KHz,最高反向电压从25伏至 3000伏分A~X共22档。分类如下:①硅半导体整流二极管2CZ型、②硅桥式整流器QL型、③用于电视机高压硅堆工作频率近100KHz的2CLG 型。

3、限幅用二极管

大多数二极管能作为限幅使用。也有象保护仪表用和高频齐纳管那样的专用限幅二极管。为了使这些二极管具有特别强的限制尖锐振幅的作用,通常使用硅材料制造的二极管。也有这样的组件出售:依据限制电压需要,把若干个必要的整流二极管串联起来形成一个整体。

4、调制用二极管

通常指的是环形调制专用的二极管。就是正向特性一致性好的四个二极管的组合件。即使其它变容二极管也有调制用途,但它们通常是直接作为调频用。

5、混频用二极管

使用二极管混频方式时,在500~10,000Hz的频率范围内,多采用肖特基型和点接触型二极管。

6、放大用二极管

用二极管放大,大致有依靠隧道二极管和体效应二极管那样的负阻性器件的放大,以及用变容二极管的参量放大。因此,放大用二极管通常是指隧道二极管、体效应二极管和变容二极管。

7、开关用二极管

   有在小电流下(10mA程度)使用的逻辑运算和在数百毫安下使用的磁芯激励用开关二极管。小电流的开关二极管通常有点接触型和键型等二极管,也有在高温 下还可能工作的硅扩散型、台面型和平面型二极管。开关二极管的特长是开关速度快。而肖特基型二极管的开关时间特短,因而是理想的开关二极管。2AK型点接 触为中速开关电路用;2CK型平面接触为高速开关电路用;用于开关、限幅、钳位或检波等电路;肖特基(SBD)硅大电流开关,正向压降小,速度快、效率 高。

8、变容二极管

用于自动频率控制(AFC)和调谐用的小功率二极管称变容二极管。日本厂商方面也有其它许多叫法。通过施加反向电压, 使其PN结的静电容量发生变化。因此,被使用于自动频率控制、扫描振荡、调频和调谐等用途。通常,虽然是采用硅的扩散型二极管,但是也可采用合金扩散型、 外延结合型、双重扩散型等特殊制作的二极管,因为这些二极管对于电压而言,其静电容量的变化率特别大。结电容随反向电压VR变化,取代可变电容,用作调谐 回路、振荡电路、锁相环路,常用于电视机高频头的频道转换和调谐电路,多以硅材料制作。

9、频率倍增用二极管

对二极管的频率倍增作用 而言,有依靠变容二极管的频率倍增和依靠阶跃(即急变)二极管的频率倍增。频率倍增用的变容二极管称为可变电抗器,可变电抗器虽然和自动频率控制用的变容 二极管的工作原理相同,但电抗器的构造却能承受大功率。阶跃二极管又被称为阶跃恢复二极管,从导通切换到关闭时的反向恢复时间trr短,因此,其特长是急 速地变成关闭的转移时间显著地短。如果对阶跃二极管施加正弦波,那么,因tt(转移时间)短,所以输出波形急骤地被夹断,故能产生很多高频谐波。

10、稳压二极管

   是代替稳压电子二极管的产品。被制作成为硅的扩散型或合金型。是反向击穿特性曲线急骤变化的二极管。作为控制电压和标准电压使用而制作的。二极管工作时 的端电压(又称齐纳电压)从3V左右到150V,按每隔10%,能划分成许多等级。在功率方面,也有从200mW至100W以上的产品。工作在反向击穿状 态,硅材料制作,动态电阻RZ很小,一般为2CW型;将两个互补二极管反向串接以减少温度系数则为2DW型。

11、PIN型二极管(PIN Diode)

   这是在P区和N区之间夹一层本征半导体(或低浓度杂质的半导体)构造的晶体二极管。PIN中的I是本征意义的英文略语。当其工作频率超过 100MHz时,由于少数载流子的存贮效应和本征层中的渡越时间效应,其二极管失去整流作用而变成阻抗元件,并且,其阻抗值随偏置电压而改变。在零偏 置或直流反向偏置时,本征区的阻抗很高;在直流正向偏置时,由于载流子注入本征区,而使本征区呈现出低阻抗状态。因此,可以把PIN二极管作 为可变阻抗元件使用。它常被应用于高频开关(即微波开关)、移相、调制、限幅等电路中。

12、 雪崩二极管 (Avalanche Diode)

   它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以 其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路 中。

13、江崎二极管 (Tunnel Diode)

它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P 型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。发生隧道效应具备如下三个条件:①费米能级位于导带和满带 内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。江崎二极管为双端子有源器件。 其主要参数有峰谷电流比(IP/PV),其中,下标P代表峰;而下标V代表谷。江崎二极管可以被应用于低噪声高频放大器及高频振荡器中 (其工作频率可达毫米波段),也可以被应用于高速开关电路中。

14、快速关断(阶跃恢复)二极管 (Step Recovary Diode)

   它也是一种具有PN结的二极管。其结构上的特点是:在PN结边界处具有陡峭的杂质分布区,从而形成自助电场。由于PN结在正向偏压下,以少数载流子 导电,并在PN结附近具有电荷存贮效应,使其反向电流需要经历一个存贮时间后才能降至最小值(反向饱和电流值)。阶跃恢复二极管的自助电场缩短了 存贮时间,使反向电流快速截止,并产生丰富的谐波分量。利用这些谐波分量可设计出梳状频谱发生电路。快速关断(阶跃恢复)二极管用于脉冲和高次谐波电路 中。

15、肖特基二极管 (Schottky Barrier Diode)

它是具有肖特基特性的金属半导体结的二极管。其正向 起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以, 其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快 速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。

16、阻尼二极管

具有较高的反向工作电压和峰值电流,正向压降小,高频高压整流二极管,用在电视机行扫描电路作阻尼和升压整流用。

17、瞬变电压抑制二极管

TVP管,对电路进行快速过压保护,分双极型和单极型两种,按峰值功率(500W-5000W)和电压(8.2V~200V)分类。

18、双基极二极管(单结晶体管)

两个基极,一个发射极的三端负阻器件,用于张驰振荡电路,定时电压读出电路中,它具有频率易调、温度稳定性好等优点。

19、发光二极管

用磷化镓、磷砷化镓材料制成,体积小,正向驱动发光。工作电压低,工作电流小,发光均匀、寿命长、可发红、黄、绿单色光。

三、根据特性分类

点接触型二极管,按正向和反向特性分类如下。

1、一般用点接触型二极管

这种二极管正如标题所说的那样,通常被使用于检波和整流电路中,是正向和反向特性既不特别好,也不特别坏的中间产品。如:SD34、SD46、1N34A等等属于这一类。

2、高反向耐压点接触型二极管

是最大峰值反向电压和最大直流反向电压很高的产品。使用于高压电路的检波和整流。这种型号的二极管一般正向特性不太好或一般。在点接触型锗二极管中,有SD38、1N38A、OA81等等。这种锗材料二极管,其耐压受到限制。要求更高时有硅合金和扩散型。

3、高反向电阻点接触型二极管

正向电压特性和一般用二极管相同。虽然其反方向耐压也是特别地高,但反向电流小,因此其特长是反向电阻高。使用于高输入电阻的电路和高阻负荷电阻的电路中,就锗材料高反向电阻型二极管而言,SD54、1N54A等等属于这类二极管。

4、高传导点接触型二极管

它与高反向电阻型相反。其反向特性尽管很差,但使正向电阻变得足够小。对高传导点接触型二极管而言,有SD56、1N56A等等。对高传导键型二极管而言,能够得到更优良的特性。这类二极管,在负荷电阻特别低的情况下,整流效率较高。