光纤传输数据的原理是什么

光电转换,光信号,转换为电信号

认为定义光在某个特性下的意思,然后一一对应即可传输

就像文字能表达意思,原因是,某个文字有它对应的含义

问:为何光纤速度快?原理解析篇!

答:一说到“光纤”,人们首先就会联想到与铜线传导电信号相比,其数据传输速度更快。这是为什么呢?下面就来介绍一下这方面的情况。

光具有每秒可环绕地球7圈半的速度。也许有人认为这一点是光通信比使用铜线的电通信快的原因,其实完全错了。因为通信中所说的速度不是信号传输的快慢,而是传输数据的能力。仅从信号传输的速度来看,在铜线中传导的电信号与在光纤中传导的光信号并没有太大的差别。但在相同时间里,使用光纤通信的线路所传输的数据量远大于铜线,所以速度就快。

在光纤通信中,发送方将电信号转换成了激光的闪烁(即激光信号)。要想在短时间内传输大量的信息,就要增加闪烁次数。也就是说,短时间内能够多大程度地使激光闪烁,将决定数据传输速度的高低。

使用铜线传导电信号时原理也是如此。通过打开和关闭电信号,或反转正、负极性,来传输数据。能多大程度地更快地打开和关闭电信号、反转电极极性,将决定其数据传输速度。

两者的不同就在于光纤打开和关闭信号的速度(即频率)极限远远高于铜线。这就是使用光纤能够进行高速通信的最主要的原因。

使用铜线的通信不仅是电信号的打开和关闭,还通过各种方法提高传输速度。使用双绞线的千兆位以太网,通过详细地改变电压值,可一次传输5位信息,而不是打开和关闭的2位信息,而且还通过把4对双绞线组成一束实现了1Gbit/秒的传输速度。千兆位以太网的传输方式可以说作为电信号通信技术现今为止已经接近了极限。

而光纤通信使用一根光纤就已经实现了相当于千兆位的1000倍的Tbit /秒级通信。而且,光纤通信速度目前远远没有达到极限。据美国贝尔实验室2001年6月公布的估算结果称,从理论上来讲在光纤通信中足以实现100Tbit/秒的传输速度。现有技术丝毫没有充分发挥光纤的潜力。

与已经接近极限的电信号通信技术相比,光纤通信技术仍有巨大的发展空间。从电信号通信技术发展历程来看光纤通信技术的发展阶段,目前的光通信技术可以说只相当于十几年前1200bit/秒的调制解调器。

光纤是如何传输光的

简单的光纤可以就是一根玻璃丝,根据不同要求,它可以做得非常细,一般从几微米到几百微米。通常很多光纤都会在表面加(涂)上一层别的物质,叫包层或涂敷层。这一层物质可以作为光疏媒质起折射作用,有的还可以增强光纤的柔软性使其可以随意弯曲。没有涂敷层的光纤就叫裸纤。裸纤也可以传播光信号(这时光纤和空气就成了两种不的介质)。根据不同需要,人们在玻璃或石英中可以加入其他化学元素,可以利用多种复杂工艺使细细光纤的内部具有复杂的结构。因此,光纤的品种也是很多的,有的可以同时传送上千种不同波型的光波,有的则只能通过单一波型的光线。光纤的制作过程比较精细,通常叫做拉丝(看看关于拉丝的介绍和设备)。光纤通信中用到的光缆是由数十到数百根这样的光纤集成的,其中每根光纤都可承担起巨大的通讯量。

光所以能在光纤中传输,主要是纤芯和包层的共同作用。根据上面讲到的光折射道理,我们就会明白,光纤的纤芯和它外面的包层肯定是两种密度不同的物质,而且纤芯的密度应该大于包层。这样,只要一个光线射入的角度合适,那么这束光线就会在光纤内部不停地进行全反射而传向另一端。

实际应用中的光纤,只要不是过分弯曲,进入光纤的光都会在光纤内来回反射,曲折向前传播,但也会有部分光渗入到包层并在其内传播。光在光纤中传播时也会激发出一定的电磁波模式, 这种模式同光纤的粗细有关,芯径太细难以形成确定的传输模式,芯径太粗则使传输模式增多,使色散严重,固而光纤的纤芯不能太粗也不能太细,一般为传输波长的几倍至几十倍。按照光纤中容许传输的电磁波模式的不同,可以把光纤分为单模光纤和多模光纤。单模光纤指只能传输一种电磁波模式,多模光纤指可以传输多个电磁波模式,实际上单模光纤和多模光纤之分,也就是纤芯的直径之分。单模光纤细,多模光纤粗。在有线电视网络中使用的光纤全是单模光纤,其传播特性好,带宽可达10GHZ,可以在一根光纤中传输60套PAL—D电视节目。

我们初步了解了光纤传输光线的原理,那么它又是如何将各种文字、图像、声音传播的呢?原来,利用电子技术,人们可以将文字、图像、声音等信息转换成电子信号,使它们统统变成由“1”和“0”组成的数字串,这就是我们现在常说的“数字技术”。在数字技术里,1和0就表示电路的开和闭,运用到光电技术里,它们可以实现有光和无光两种状态。于是,人们通过光端机(向光纤中输入光信号的设备)向光纤发出一连串明暗不同的光信号,光纤的另一端接收到这些光信号后,再通过专门的设备把它还原成数字信号,最后再由电视、收音机、计算机等将数字信号还原成文字、图像、声音等。

光纤传输光在光纤中的传输原理是什么

光纤为什么能传输数据

这是利用了光纤内传输的光,而光的不同波长可以传输不同数据,由于光互相之间没有干扰,所以可以通过不同波长来传输不同的数据,光纤的带宽理论上是无限的。比如:1310nm, 1550nm, 1490nm,等等。

光纤传输数据是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。

光在光纤中的传输原理是什么

射线理论认为,光在光纤中传播主要是依据全反射原理。全反射原理:因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。

当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。

按照几何光学全反射原理,射线在纤芯和包层的交界面产生全反射,并形成把光闭锁在光纤芯内部向前传播的必要条件,即使经过弯曲的路由光线也不射出光纤之外。

扩展资料:

光纤的分类:

①石英光纤:

石英光纤(Silica Fiber)是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的折射率分布的光纤。石英(玻璃)系列光纤,具有低耗、宽带的特点,已广泛应用于有线电视和通信系统。

石英玻璃光导纤维的优点是损耗低,当光波长为1.0~1.7μm(约1.4μm附近),损耗只有1dB/km,在1.55μm处最低,只有0.2dB/km。

②掺氟光纤:

掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。通常,作为1.3μm波域的通信用光纤中,控制纤芯的掺杂物为二氧化锗(GeO2),包层是用SiO2作成的。但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。

由于瑞利散射损耗是因折射率的变动而引起的光散射现象。所以,希望形成折射率变动因素的掺杂物,以少为佳。氟素的作用主要是可以降低SIO2的折射率。因而,常用于包层的掺杂。

石英光纤与其它原料的光纤相比,还具有从紫外线光到近红外线光的透光广谱,除通信用途之外,还可用于导光和图像传导等领域。

③红外光纤:

作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,也只能用于2μm。为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。红外光纤(Infrared Optical Fiber)主要用于光能传送。

例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。

④复合光纤:

复合光纤(Compound Fiber)是在SiO2原料中,再适当混合诸如氧化钠(Na2O)、氧化硼(B2O3)、氧化钾(K2O)等氧化物制作成多组分玻璃光纤,特点是多组分玻璃比石英玻璃的软化点低且纤芯与包层的折射率差很大。主要用在医疗业务的光纤内窥镜。

⑤氟氯化物光纤:

氟化物光纤氯化物光纤(Fluoride Fiber)是由氟化物玻璃作成的光纤。这种光纤原料又简称 ZBLAN(即将氟化锆(ZrF2)、氟化钡(BaF2)、氟化镧(LaF3)、氟化铝(AlF3)、氟化钠(NaF)等氯化物玻璃原料简化成的缩语。

主要工作在2~10μm波长的光传输业务。由于ZBLAN具有超低损耗光纤的可能性,正在进行着用于长距离通信光纤的可行性开发,例如:其理论上的最低损耗,在3μm波长时可达10-2~10-3dB/km,而石英光纤在1.55μm时却在0.15-0.16dB/Km之间。

ZBLAN光纤由于难于降低散射损耗,只能用在2.4~2.7μm的温敏器和热图像传输,尚未广泛实用。最近,为了利用ZBLAN进行长距离传输,正在研制1.3μm的掺镨光纤放大器(PDFA)。

⑥塑包光纤:

塑包光纤(Plastic Clad Fiber)是将高纯度的石英玻璃作成纤芯,而将折射率比石英稍低的如硅胶等塑料作为包层的阶跃型光纤。它与石英光纤相比较,具有纤芯粗、数值孔径(NA)高的特点。因此,易与发光二极管LED光源结合,损耗也较小。所以,非常适用于局域网(LAN)和近距离通信。

参考资料:百度百科- 光纤

光在光纤中的传输原理是什么、光纤传输,就介绍到这里啦!感谢大家的阅读!希望能够对大家有所帮助!