怎么维修72伏电动车充电器型号tl494电路没电压输出

这个与其它的用电器一样的是,故障也有个集中性。

电源线、整流管、滤波电容所占的比例较大。这三项占充电器故障的80%以上。

功率管也有一定的比例。

前三项的可修性较大,也较简单。

包括功率管在内的后级电路的可修性不大,这是因为电路复杂性、元件不好配、及价格、功夫、时间等因素。

TL494电动车充电器原理图

和T;493是一样的

电动车充电器原理

常用电动车充电器根据电路结构可大致分为两种。

第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见 图表1 工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整

R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。此电压一路经R18,强迫Q2导通,D6(红灯)点亮,第二路注入LM358的6脚,7脚输出低电压,迫使Q3关断,

D10(绿灯)熄灭,充电器进入恒流充电阶段。当电池电压上升到44.2V左右时,充电器进入恒压充电阶段,输出电压维持在44.2V左右,充电器进入恒压充电阶段,电流逐渐减小。当充电电流减小到200mA—300mA时,R27上端的电压下降,LM358的3脚电压低于2脚,1脚输出低电压,Q2关断,D6熄灭。同时7脚输出高电压,此电压一路使Q3导通,D10点亮。另一路经D8,W1到达反馈电路,使电压降低。充电器进入涓流充电阶段。1-2小时后充电结束。

充电器常见的故障有三大类。1:高压故障 2;低压故障 3:高压,低压均有故障。高压故障的主要现象是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿,R25开路。

U1的7脚对地短路。R5开路,U1无启动电压。更换以上元件即可修复。若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。应重点检测Q1和T1的引脚是否有虚焊。若连续击穿Q1,且

Q1不发烫,一般是D2,C4失效,若是Q1击穿且发烫,一般是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1

的开关损耗和发热量大增,导致Q1过热烧毁。高压故障的其他现象有指示灯闪烁,输出电压偏低且不稳定,一般是T1的引脚有虚焊,或者D3,R12开路,TL3842及其外围电路无工作电源。另有一种罕见的高压故障是输出电压偏高到120V以上,一般是U2失效,R13开路所致或U3击穿使U1的2脚电压拉低,6脚送出超宽脉冲。此时不能长时间通电,否则将严重烧毁低压电路。低压故障大部分是充电器与电池正负极接反,导致R27烧断,LM358击穿。其现象是红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复。另外W2因抖动,输出电压漂移,若输出电压偏高,电池会过充,严重失水,发烫,最终导致热失控,充爆电池。若输出电压偏低,会导致电池欠充。高低压电路均有故障时,通电前应首先全面检测所有的二极管,三极管,光耦合器4N35,场效应管,电解电容,集成电路,R25,R5,R12,R27,尤其是D4(16A60V,快恢复二极管),C10(63V,470UF)。避免盲目通电使故障范围进一步扩大。有一部分充电器输出端具有防反接,防短路等特殊功能。其实就是输出端多加一个继电器,在反接,短路的情况下继电器不工作,充电器无电压输出。还有一部分充电器也具有防反接,防短路的功能,其原理与前面介绍的不同,其低压电路的启动电压由被充电池提供,且接有一

个二极管(防反接)。待电源正常启动后,就由充电器提供低压工作电源。

第二种充电器的控制芯片一般是以TL494为核心,推动2只13007高压三极管。配合LM324(4运算放大器),实现三阶段充电。图2 220V交流电经D1-D4整流,C5滤波得到300V左右直流电。此电

压给C4充电,经TF1高压绕组,TF2主绕组,V2等形成启动电流。TF2反馈绕组产生感应电压,使V1,V2轮流导通。因此在TF1低压供电绕组产生电压,经D9,D10整流,C8滤波,给TL494,LM324,V3,V4等供电。此时输出电压较低。TL494启动后其8脚,11脚轮流输出脉冲,推动V3,V4,经TF2反馈绕组激励V1,V2。使V1,V2,由自激状态转入受控状态。TF2输出绕组电压上升,此电压经R29,R26,R27分压后反馈给TL494的1脚(电压反馈)使输出电压稳定在41.2V上。R30是电流取样电阻,充电时R30产生压降。此电压经R11,R12反馈给TL494的15脚(电流反馈)使充电电流恒定在1.8A左右。另外充电电流在D20上产生压降,经R42到达LM324的3脚。使2脚输出高电压点亮充电灯,同时7脚输出低电压,浮充灯熄灭。充电器进入恒流充电阶段。而且7脚低电压拉低D19阳极的电压。使TL494的1脚电压降低,这将导致充电器最高输出电压达到44.8V。当电池电压上升至44.8V时,进入恒压阶段。当充电电流降低到0.3A—0.4A时LM324的3脚电压降低,1脚输出低电压,充电灯熄灭。同时7脚输出高电压,浮充灯点亮。而且7脚高电压抬高D19阳极的电压。使TL494的1脚电压上升,这将导致充电器输出电压降低到41.2V上。充电器进入浮充。

tl494充电器原理与维修3845与tl494和光耦817组成的电动车充电器原理哪位老师讲一下

3845与tl494和光耦817组成的电动车充电器原理哪位老师讲一下

1.PWM产生和推动电路

PWM产生电路由IC1TL494和外围元件构成。TL494是PWM开关电源集成电路。引脚功能和内 部框图如图2所示。

IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC, 按图中数值为50KHz。第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。第13脚为输出方式控制端 ,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。第4脚为死区电压控制端,该脚电压决定死区时间。电位升高 ,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。凡输出端采用全桥或半桥式的开关电路,都要 正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。+44V充电电压经R28、R27和R26分 压反馈至第1脚。C15是软启动电容。第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。第1脚电压越高,输出脉宽越窄,充电电压越低; 反之脉宽增宽,充电电压升高。从而实现+44V充电电压的目的。Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。R29是脚充电电 流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。充电电流越大,第15脚电位越低。当第15脚电位低于第16脚(接地)电位 时,IC输出端将被封闭,从而实现过流保护。Rb是过流保护调试电阻,本机予设为1.8A。

电动车(48v)充电原理图解说

充电器.一插上电源,充电器一点反应都没有.但储能电容还有电,如果不及时在这里放电的话,还会让你心惊肉跳一下,很难受。

首先确定13007是否好,测二个管子的中点电压是否是150V,是150V就是电容68UF/400V到大变压器电路之间有问题。不是150V就是二只240K启动电阻有一只坏了。大部分是后一种情况。如果是3842的电路一般是启动电阻变的无穷大,那两个2.2欧姆的电阻也要检查。

TL494充电器原理与维修

电动自行车充电器多采用开关 电源,型号虽多,但电路结构大同小异,主要区别在于所选的脉宽调制(PWM)芯片不同如(UC3845、UC3842、SG3524、TL494)。常用电动车充电器根据电路结构可大致分为两种。第一种充电器的控制芯片一般是以TL494为核心,推动2只13007高压三极管。配合 LM324(4运算放大器),实现三阶段充电。还有一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。

一、电路原理

根据实物测绘的佳腾牌充电器电路原理如图1所示。整机可分为PWM产生和推动电路、功 率开关变换电路、充电状态指示电路和交流输入电路四个部分。

1.PWM产生和推动电路

PWM产生电路由IC1TL494和外围元件构成。TL494是PWM开关电源集成电路。引脚功能和内 部框图如图2所示。

IC1的第5、6脚外接的C10、R19是定时元件,决定锯齿波振荡器的振荡频率,F=1.1/RC, 按图中数值为50KHz。第14脚是+5V基准电压输出端,除芯片内部使用外,还直接或分压后供第2、4、13脚和IC2使用。第13脚为输出方式控制端 ,该脚接低电平时为单端输出方式,图中接第14脚+5V高电平,为双端输出方式。第4脚为死区电压控制端,该脚电压决定死区时间。电位升高 ,死区时间延长,输出脉宽变窄,当电压大于锯齿波电压时,输出脉宽将变得很窄,甚至停振。凡输出端采用全桥或半桥式的开关电路,都要 正确设置死区时间,以免两个开关管同时导通,发生电源短路的危险。图中该脚电位由基准电压经R24和R20分压取得,实测电压为0.46V。第1 、2脚和第16、15脚是IC1内部的两个电压比较器的正、反相输入端,分别用作充电电压取样和充电电流取样。+44V充电电压经R28、R27和R26分 压反馈至第1脚。C15是软启动电容。第2脚电位由基准电压经R23和R3分压取得,实测为3.2V。第1脚电压越高,输出脉宽越窄,充电电压越低; 反之脉宽增宽,充电电压升高。从而实现+44V充电电压的目的。Ra是充电电压调试电阻,Ra和R26并联值越小,充电电压越高。R29是脚充电电 流取样电阻,由该电阻上取得的电压变化,经R13送入IC1的第15脚。充电电流越大,第15脚电位越低。当第15脚电位低于第16脚(接地)电位 时,IC输出端将被封闭,从而实现过流保护。Rb是过流保护调试电阻,本机予设为1.8A。

外部输入信号的变化,经片内电路处理后,由8、10脚输出一对大小相等,相位相差180 度,脉宽可变的方波,经V3、V4推挽放大后,由变压器T2耦合至功率开关变换电路。

2.功率开关变换电路

V1、V2两个开关管串联接在+300V供电电压和地之间,组成半桥式开关电路,在调宽脉冲 的作用下,轮流导通和截止,将+300V直流转换为高频交流电。电流流向示意图如图3所示。V1导通时,C5+→V1ce→T2的2、4端→T3的2、1端→ C6→C5-。V2导通时,C5+→C4→T3的1、2端→T2的4、2端→V2ce→C5-。T3次级输出电压经D15、C17全波整流滤波,输出+44V供蓄电池充电。T3 次级另一绕组经D、D10、C18整流滤波,输出+24V向IC1和IC2供电。

R7、R是启动电阻,在开机瞬间向V1、V2基极提供激励电流,使电路自激启动。

C7、D5、R4或C8、D8、R11)是加速网络。D6、D7为保护二极管。C3、R1为尖峰吸收网络 。

3.交流输入电路

220V市电经D1-D4桥式整流、C5滤波,取得+300V电压,向功率开关变换电路供电。

4.充电状态指示电路

由IC2(HA17358)和双色发光管LED2构成。IC2是双运放集成电路,这里接成两个电压比 较器。由充电电流取样电阻R29取得的电压变化信号,经R31送入IC2的第2脚。充电初期,充电电流较大,R29上电压增大(注意:R2上的电压对 地为负电压),第2脚电位低于第3脚电位,第1脚输出高电平,充电指示灯LED2-A点亮。当电池接近充满时,充电电流减小,R29上的电压也降 低,当第2脚电位高于第3脚电位时,第1、6脚变为低电平,第7脚输出高电平,充满指示灯LED2-B点亮。

Rc是充电状态指示调整电阻,选用适当的阻值接入,使之达到设定的指示状态(200mA) 。

二、检修方法

本机有热地和冷地之分,测量时 不要选错参考点。热地和市电相通,若加电检修,应加隔离变压器,以防触电。多数情况下,使用万用表的电阻档就能找到故障元件。检修PWM 电路用外接电源(即在+24V滤波电容C18两端外接15-20V稳压电源)最为安全有效。

加电试机,正常情况下,LED1应 点亮。+44V端不接负载时,充电指示LED2-B应亮(绿色),+44V略有下降,实测为+44V不要误为故障。接入假负载时(可用1000W电炉丝代)充 电指示LEED2-A应亮。

1.保险烧断、玻璃管内壁发黑或 炸裂

此现象说明电路有严重短路之处 ,以滤波电容C5、市电整流管D1-D4、开关管V1-V2、整流管D15等多个元件同时击穿多见。用万用表电阻档在路即可找出故障元件。

2.电源指示灯LED1不亮,无+44V 电压输出

此现象说明电路没有工作,在 +300V电压输出正常的情况下,应重点检查启动电阻R7、R9有无断路,V1、V2基极回路元件D5、R4、R6、D8、R11、R8损坏,IC1、V3、V4损坏而 无调宽脉冲输出。

外接电源,用示波器测IC1第5脚 ,应有正常的锯齿波形,若定时元件R19、C10正常而无波形,可判定IC1损坏。IC1的8脚和11脚应测得正常方波,当测其无波形或波形不正常时 ,若各脚电压正常,应更换IC1。若V3、V4波形不正常,查R12、V3、V4和外围元件。

表1、表2和图4、图5列出在外接 +15V稳压电源、+44V输出端空载条件下IC1、IC2各脚对地电压值和关键点波形图,供检修参考。IC1第14脚(+5V基准电压)若不正常,IC1第13 、2、4、脚电压都会不正常,IC2有关引脚电压也会不正常。断开IC1第14脚外电路后,若各脚电压仍不正常,则可判定IC1损坏

UC3842充电器原理与维修

以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V),C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。

充电器常见的故障有三大类。1:高压故障 2;低压故障 3:高压,低压均有故障。高压故障的主要现象是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。Q1击穿,R25开路。U1的7脚对地短路。R5开路,U1无启动电压。更换以上元件即可修复。若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。应重点检测Q1和T1的引脚是否有虚焊。若连续击穿Q1,且Q1不发烫,一般是D2,C4失效,若是Q1击穿且发烫,一般是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1的开关损耗和发热量大增,导致Q1过热烧毁。高压故障的其他现象有指示灯闪烁,输出电压偏低且不稳定,一般是T1的引脚有虚焊,或者D3,R12开路,TL3842及其外围电路无工作电源。另有一种罕见的高压故障是输出电压偏高到120V以上,一般是U2失效,R13开路所致或U3击穿使U1的2脚电压拉低,6脚送出超宽脉冲。此时不能长时间通电,否则将严重烧毁低压电路。

低压故障大部分是充电器与电池正负极接反,导致R27烧断,LM358击穿。其现象是红灯一直亮,绿灯不亮,输出电压低,或者输出电压接近0V,更换以上元件即可修复。另外W2因抖动,输出电压漂移,若输出电压偏高,电池会过充,严重失水,发烫,最终导致热失控,充爆电池。若输出电压偏低,会导致电池欠充。

高低压电路均有故障时,通电前应首先全面检测所有的二极管,三极管,光耦合器4N35,场效应管,电解电容,集成电路,R25,R5,R12,R27,尤其是D4(16A60V,快恢复二极管),C10(63V,470UF)。避免盲目通电使故障范围进一步扩大。有一部分充电器输出端具有防反接,防短路等特殊功能。其实就是输出端多加一个继电器,在反接,短路的情况下继电器不工

3845与tl494和光耦817组成的电动车充电器原理哪位老师讲一下、tl494充电器原理与维修,就介绍到这里啦!感谢大家的阅读!希望能够对大家有所帮助!