空调压缩机排气温度过高是什么原因如何处理

压缩机排气温度过高排气温度过热的原因主要有以下几种:回气温度高、电机加热量大、压缩比高、冷凝压力高、制冷剂选择不当。

(1)回气温度高回气温度高低是相对于蒸发温度为而言的。为了防止回液,一般回气管路都要求20°C的回气过热度。如果回气管路保温不好,过热度就远远超过20°C。回气温度越高,气缸吸气温度和排气温度就越高。回气温度每升高1°C,排气温度将升高1~1.3°C。

(2)电机加热对于回气冷却型压缩机,制冷剂蒸气在流经电机腔时被电机加热,气缸吸气温度再一次被提高。电机发热量受功率和效率影响,而消耗功率与排量、容积效率、工况、摩擦阻力等密切相关。回气冷却型半封压缩机,制冷剂在电机腔的温升范围大致在15~45°C之间。空气冷却(风冷)型压缩机中制冷制不经过绕组,因而不存在电机加热问题。

(3)压缩比过高排气温度受压缩比影响很大,压缩比越大,排气温度就越高。降低压缩比可以明显降低排气温度,具体方法包括提高吸气压力和降低排气压力。吸气压力由蒸发压力和吸气管路阻力决定。

提高蒸发温度,可以有效提高吸气压力,迅速降低压缩比,从而降低排气温度。一些用户偏面地认为,蒸发温度越低冷度速度越快,这种想法其实有很多问题。降低蒸发温度虽然可以增加冷冻温差,但压缩机的制冷量却减小了,因此冷冻速度不一定快。何况蒸发温度越低,制冷系数就越低,而负荷却有增加,运转时间延长,耗电量会增大。

降低回气管路阻力也可以提高回气压力,具体方法包括及时更换脏堵的回气过滤器、尽可能缩小蒸发管和回气管路的长度等。此外,制冷剂不足也是吸气压力低的一个因素。制冷剂漏失后要及时补充。实践表明,通过提高吸气压力来降低排气温度,比其他方法更简单有效。排气压力过高的主要原因是冷凝压力太高。

冷凝器散热面积不足、积垢、冷却风量或水量不足、冷却水或空气温度太高等均可导致冷凝压力过高。选择合适的冷凝面积、维持充足的冷却介质流量是非常重要的。高温和空调压缩机设计的运压缩比较低,用于冷冻后压缩比成倍提高,排气温度很高,而冷却跟不上,造成过热。

因该避免超范围使用压缩机,并使压缩机工作在可能的最小压比下。在一些低温系统中,过热是压缩机故障的首要原因。

(4)反膨胀与气体混合吸气行程开始后,滞留在气缸余隙内的高压气体会有一个反膨胀过程。反膨胀后气体压力恢复到吸气压力,用于压缩这部分气体而消耗的能量在反膨胀中就损失掉了。余隙越小,一方面反膨胀引起的功耗越小,另一方面吸气量越大,压缩机能效比因此大大增加。

反膨胀过程中,气体与阀板、活塞顶部和气缸顶部的高温面接触吸热,因而反膨胀结束时气体温度不会降低到吸气温度。反膨胀结束后,正真的吸气过程才开始。气体进入气缸后一方面与反膨胀气体混合,温度升高;另一方面,混合气体从壁面上吸热升温。因此压缩过程开始时的气体温度比吸气温度高。但由于反膨胀过程和吸气过程非常短暂,实际的温升很非常有限,一般不足5°C。

反膨胀是由气缸余隙引起的,是传统活塞式压缩机无法回避的缺点。阀板排气孔中的气体排不出,就会有反膨胀。谷轮公司的专利碟型阀板的排气阀片非常特殊,可以消灭排气孔余隙和气体滞留,从根本上控制了反膨胀。从发明至今,碟阀压缩机一直保持着效率最高的记录。

(5)压缩温升与制冷剂种类不同的制冷剂的热物理性质不同,经历同样的压缩过程后排气温度升高量不同。因此对于不同的制冷温度,应该选用不同的制冷剂。图1-3显示了冷凝温度为50°C、回气过热度20°C时不同制冷剂的绝热压缩引起的温度升高值。考虑到20°C 的回气过热度和30°C的电机加热,理论排气温度将超过150°C,需要附加冷却。对于蒸发温度在0°C以上(比如空调)来说,排气温度不应该超过110°C,不存在过热问题

结论与建议:压缩机在使用范围内正常运转不应该有电机高温和排汽温度过高等过热现象。压缩机过热是一个重要的故障信号,表明制冷系统存在较严重的问题,或者压缩机的使用和维护不当。如果压缩机过热的根源在于制冷系统,只能从改进制冷系统设计和维护方面着手解决问题。换一台新压缩机上去不能从根本上消除过热问题。

汽车空调压缩机吸排气压力与转速的关系

在汽车空调试验台上,测试了标准工况下旋叶式汽车空调压缩机从启动到稳定过程中,吸排气温度、吸排气压力、制冷量及COP 等参数随时间的变化关系曲线。分析了影响其启动过程的主要因素,并提出了一些合理措施。

关键词:旋叶压缩机 启动 瞬态特性

1 引言

汽车空调(尤其是核心部件的汽车空调压缩机) 对改善车室内温度环境起着重要作用。旋叶式汽车空调压缩机以其质量轻、部件少、结构紧凑、容积效率高、启动力矩小、运转平稳等优点,成为小型汽车空调用压缩机的新一代产品[1 ,2 ] 。

尽管旋叶式汽车空调压缩机已经批量生产,但是对其研究还主要是理论分析和试验。理论分析包括机型设计和工作过程数值模拟计算等方面;试验主要是为了验证实际工作工况与设计工况之间的差异, 发现并寻找解决问题的方法和途径。因此到目前为止,对旋叶式汽车空调压缩机启动瞬态特性的研究还很少。

本文结合试验, 得出了汽车空调旋叶压缩机吸排气温度、压力、制冷量及COP 随时间的变化关系曲线,并对旋叶压缩机启动特性进行了较为

详细的分析。由于汽车空调压缩机在汽车发动机怠速情况或者行车过程中突然启动时, 对汽车发动机输出功率的影响比较大, 因此对旋叶压缩机启动特性的研究将有助于汽车空调压缩机的设计和改进,使汽车空调启动对汽车行驶性能的影响降低到最低程度,从而提高了乘车的舒适性。

2 测试系统

2.1 试验方法和测量工况

在标准工况下进行压缩机的性能测试, 试验方法按照GB/ T 5773 - 1986 和QC/ T 660 - 2000《汽车空调(HFC134a) 用压缩机试验方法》的规定[3 ,4 ] ,在汽车空调压缩机性能测试试验台上完成。测量结果通过数据采集系统直接在计算机上记录,数据采集间隔时间为20s ,从而实现对压缩机运转工况的瞬态监测。压缩机由变速电机驱动,也可按需要调定电机,电机和压缩机之间用转速转矩计连接起来(转速转矩计用于测量输入压缩机的轴功率) 。

试验在标准工况下进行,具体参数如下:压缩机转速为1800r/ min ;吸气压力为0. 180MPa ,对应的饱和温度为- 1. 1 ℃;排气压力为1. 694MPa ,对应的饱和温度为62. 8 ℃;吸气温度为7. 2 ℃;制冷剂过冷温度为57. 8 ℃。

2.2 汽车空调压缩机测试系统

测试系统的制冷系统由立式盘管式量热器、立式盘管式冷凝器、开度可调节的膨胀阀、被测压缩机、油气分离器及干燥过滤器等部件组成,如图1 所示。

如图1 所示,量热器、冷凝器的外壳均为与环境绝热的压力容器, 量热器和冷凝器内的系统盘管呈等直径螺旋状,处于第二制冷剂的蒸汽中(量热器) 及系统工质的冷凝液体中(冷凝器) 。量热器中, 系统工质在管内蒸发, 管外是第二制冷剂R12 蒸汽,电加热器浸没在第二制冷剂的液体中;冷凝器中,系统工质在管外冷凝,水在管内流动。压缩机的制冷量等于量热器中的电加热量。

3 旋叶压缩机性能瞬态分析

3.1 吸排气压力

压缩机启动前,滑片在润滑油的粘性作用下,粘附在滑槽中间, 滑片端部与气缸内壁面分离。由于各个压缩腔之间相通,使得吸排气压力均衡。

关闭平衡阀, 进行性能测试。压缩机启动后,R134a 蒸汽被压缩,吸排气压力迅速上升,但是由于滑片在甩出滑槽时受到润滑油粘度引起的粘性阻力的影响,不能实现启动瞬间就完全甩出滑槽从而与气缸壁面达到很好的压力接触。这就造成前后压缩腔之间的气体泄漏量很大,要达到稳定需要一段时间的运转。这个过程是渐缓的,所以排气压力升高速度先快后慢。随着压缩机的运转,缸体表面和润滑油的温度升高,制冷剂蒸汽在较高温度下被压缩,排气压力继续升高直到标定压力值1. 694 MPa 。整个过程约需9min。

吸、排气压力随时间的变化关系如图2 所示。对于吸气压力来说,由于启动初期泄露量很大,前面高压腔泄漏过来的气体与后面低压腔的气体混和,使得低压腔的气体压力升高,这个作用一直向后延续到吸气孔口, 从而导致吸气压力也跟着上升,而且上升速率接近排气压力。上述分析可以直观地从图2 启动瞬间到1min 左右的那段直线看出。当滑片在离心力、摩擦力、气体力以及背压力等各种作用力的综合作用下紧贴气缸壁形成良好的压力接触后,高压腔到低压腔的泄漏量就变得非常小,因此吸气压力就开始回落。同时由于量热器的电加热量上升,空调系统中流动的制冷剂开始完全蒸发,进入压缩机吸气孔口的吸气压力也随之降低,最终吸气压力达到0. 180MPa 。吸气压力达到稳定的时间比排气压力要短得多,只需要5min 左右即可完成。

3.2 吸排气温度

与吸排气压力的变化相似,吸排气温度的变化也是一个逐步升高最终达到稳态的过程。唯一不同的就是温度的升高没有压力变化快,而且温度在稳定值上下波动较大。如图3 所示,吸排气温度在启动15min 以后才趋于稳定。其主要原因是由于旋叶压缩机启动前期,系统处于环境温度,在压缩机运转过程中,工作基元封闭控制容积里的工质要与外界发生热交换。气缸内的热交换过程较复杂。将工质在气缸内的热交换分为两类[5] :

(1) 工质与所接触气缸壁的热交换。

(2) 工质与润滑油的热交换。缸体壁面的温度与排气温度同步上升, 当压缩工质向外界的热交换达到稳态时,排气温度也趋于稳定。

吸气温度开始有一段上升过程, 这主要是由于高压腔泄露出来的高压、高温气体与吸入的制冷剂蒸汽混和,使吸气温度升高。随着泄露量的减小,吸气温度开始回落到蒸发器的蒸发温度,并在此数值上下波动。

3.3 制冷量及COP

由于高温、高压气体泄露到低压、低温的侧基元容积中,两者的混和加热作用使基元容积中的气体在较高温度下压缩, 增加了该基元容积向其低压侧的泄露量, 最终使压缩机的吸入气体量减少,从而导致制冷量减少。所以在旋叶压缩机启动后,其制冷量不是瞬间达到设计值,而是逐步上升。当上升到设计值附近,由于压缩过程中的各种气体干扰因素, 使得制冷量会随时间上下波动而趋于稳定。制冷量Q0 随时间的变化关系曲线见图4 , COP 随时间的变化关系曲线如图5 所示。

3.4 电机转速

试验是在标准工况下进行, 电机转速为1800r/ min。电机的转速随时间的变化关系曲线如图6 所示[6 ] ,由图可见约需15s 电机的速度才

可以达到1800 r/ min 的稳定状态。

旋叶式压缩机制冷量与转速n 的关系为:

式中Vs ———实际输气量,cm3/ r

qv ———单位容积的制冷量,kJ / m3

n ———转速, r/ min

由于压缩机的制冷量和转速成正比关系, 而且限于测量系统的前20s 采样时间未到, 因此在这段时间内,可从理论上近似地认为压缩机的制冷量随时间的变化关系曲线与电机转速随时间的变化关系曲线相似。但是由于滑片克服润滑油粘性阻力需要较大的离心力, 加上启动初期制冷剂气体泄露很严重, 所以在转速达到1800r/ min 的过程中及其稍后的1min 时间内,旋叶式压缩机的制冷量为零。上述分析在图4、5 的试验数据曲线起始阶段得到了很好的验证。

4 结论

(1) 旋叶式汽车空调压缩机在启动到稳定的过程中,吸排气压力、吸排气温度和制冷量的变化都是逐步升高, 直到稳定。其中, 吸气压力约需5min ,排气压力约需9min 就可以达到稳定;而吸排气温度的变化速度比较缓慢,约需要15min 才趋于稳定;制冷量达到稳定大约需要8min。

(2) 压缩机启动初期,滑片与气缸壁面不能形成良好的压力接触,所以泄漏严重,这是影响启动过程的主要因素, 在吸排气压力参数变化上可以

得到很好的验证(影响吸排气温度的主要因素是气缸内的热交换) 。

(3) 为了使旋叶压缩机在很短的时间内达到稳定,可以使用粘度较小的润滑油,减小启动初期的泄漏量;同时尽量在环境温度较高的情况下启动,减少基元控制容积中的传热量

什么是空调的排气温度

排气温度是压缩机作功后排出气体的温度,可用温度计从排气管上测得。排气温度的高低与压力比和吸气温度成正比。压力比越大,吸气温度越高,则排气温度就越高。

空调压缩机吸排气温度空调压缩机为什么排气温度这么高

空调压缩机为什么排气温度这么高

空调压缩机排气温度高的原因如下:

1.压缩机中吸、排气阀门、活塞环损坏;

2.压缩机吸气温度过高;

3.压缩机汽缸中余隙过大;

4.压缩机吸气压力过低或吸气阀开的过小;

5.压缩机排气管道中阻力过大;

6.压缩机缸盖冷却水套水量不足;或冷却水温度过高;

7.压缩机安全旁通阀泄漏;

8.压缩机汽缸中润滑油中断;

9.压缩机的制冷能力小于库房设备能力,如蒸发面积过大;

10.压缩机吸气管道或过滤器有堵塞现象,隔热层保温层损坏。

空调压缩机排气温度过高

1冷凝效果差 2系统内充制冷剂过多或者是压缩机的高 ,低压端串气

空调压缩机为什么排气温度这么高、空调压缩机吸排气温度,就介绍到这里啦!感谢大家的阅读!希望能够对大家有所帮助!