单片机晶振电路原理及作用

晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络。电工学上这个网络有两个谐振点,以频率的高低分,其中较低的频率是串联谐振;较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

晶振有一个重要的参数——负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容。请注意一般IC的引脚都有等效输入电容,这个不能忽略。一般的晶振的负载电容为15pF或12.5pF,如果再考虑元件引脚的等效输入电容,则两个22pF的电容构成晶振的振荡电路就是比较好的选择。

单片机晶振电路的作用

晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。

晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。

晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。其中Co,C1,L1,RR是晶体的等效电路。

单片机晶振电路原理及作用

分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。因而能“压控”的频率范围也越小。实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。

微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;RC(电阻、电容)振荡器。一种是皮尔斯振荡器配置,适用于晶振和陶瓷谐振槽路。另一种为简单的分立RC振荡器。

万用表测量晶体振荡器是否工作的方法:测量两个引脚电压是否是芯片工作电压的一半,比如工作电压是51单片机的+5V则是否是2.5V左右。另外如果用镊子碰晶体另外一个脚,这个电压有明显变化,证明是起振了的。