使用预负载是限制上冲和下冲的一种实用技术。可以将一个预负载与待测设备并联在一起,这时可编程电源的直流输出将限制电流变化率,从而显著减小直流电压上冲和下冲的幅度。想像一下50%的电流流经这个附加的预负载,另外50%的电流流经待测设备。当待测设备产生100%电流需求时,电源只看到50%的电流需求变化。管理50%而不是100%的电流需求变化对电源来说容易得多,而且几乎消除了高压上冲效应,因而避免了对待测设备的任何损坏可能。在本例中可以使用简单便宜的阻性负载作为预负载。任何比例都是好的。换句话说,为了获得瞬态响应和上冲规格的改善,这个新增负载吸收40%、50%还是60%的电流需求并不是关键。

图4:使用预负载的测试方案示意图。

使用预负载的缺点是要求两倍的直流输出电流。幸运的是,如果你使用AMETEK的开关电源,额外功率要求的代价是相当便宜的。因此与专门的电源子系统来说,针对这种特殊应用使用预负载是一种成本很低、实用性更强的方法。

图5:开关电源架构。

摆率

下一个需要考虑的规格参数是直流输出电压的压摆率(上升和下降时间)。为了改善纹波和噪声性能,直流可编程电源的输出滤波器中会使用存储大量能量的大电容。这个滤波器的充放电时间和待测设备的电流需求是决定电源压摆率的主要因素。压摆率基本上与所连的待测设备无关。

对于大多数AMETEK电源来说,直流输出上升时间对大部分应用而言是足够快的。只需考虑直流输出下降时间。下降时间不仅取决于可编程电源直流输出端的内部LCR滤波网络,而且取决于所连接的待测设备。如果与电源电流容量相比待测设备抽取的电流相对较小,那么输出电容中存储的能量在通过待测设备耗尽之前可能要花很长的时间。如果待测设备的最小电流要求至少是电源容量的60%,那么存储的能量将立即释放掉,输出电压的下降时间是最短的。虽然如此,在大多数情况下直流输出下降时间都要比直流输出上升时间慢两到三倍。