改善直流输出上升时间的一种方法是选择具有更高直流输出范围的可编程电源。例如,如果待测设备是与汽车相关的设备,一个30VDC的电源可以覆盖所有测试应用,那就选择一个60VDC的可编程电源,但只使用到30VDC。这样做的理由是60VDC电源的输出电容要比30VDC可编程电源的输出电容小很多。两种电源的输出电压从0V到满刻度的时间是相等的。换句话说,当观察单位为V/ms的上升时间时,60VDC电源的上升时间要比30VDC电源快一倍。
为了改善直流输出下降时间,可以在待测设备或电源的直流输出端并联一个预负载。不过要确保预负载和待测设备加在一起的总电流需求至少要达到可编程电源电流能力的65%。这个方法要求电源提供更多的功率,因为在相同输出电流条件下要求更大的直流输出电压范围。
典型的输出电流摆率是45A/ms。AMETEK可编程电源公司生产的一些直流电源还支持固态激光应用。这些是输出电流摆率高达400A/ms的电流源。
将电子负载与电源串联起来、并将电子负载用作电流调制器可以实现更快的电流摆率。这种组合允许电流摆率高达6000A/ms。
负载调整率
可编程电源的另外一个重要参数是负载调整率,它是指由于待测设备电流需求变化引起的输出电压距设置点变化的百分比。正常情况下这种效应应该是非常小的(不到设定输出电压的0.01%)。
图6:作为负载变化函数的输出电压的变化百分比
线路调整率
线路调整率规定了作为交流输入线路电压函数的直流输出电压或电流的变化百分比。当输入线路电压不稳定时,这个参数就显得尤其重要。