基于模拟退火遗传算法的多用户检测器以匹配滤波器的输出作为模拟退火遗传算法的初始值,再通过模拟退火遗传算法的启发式搜索,提高多用户检测器的抗多址干扰和抗远近效应能力。同时通过模拟退火算法来减轻遗传算法的选择压力,这样不但可以避免遗传算法的早熟收敛问题,并且使群体中的最优解得到了保留。模拟退火遗传算法多用户检测器的基本操作流程如下:
(1)初始化控制参数。如群体规模N、用户数K、初始温度t0、变化系数?坠、变异概率Pm和交叉概率Pc等。
(2)编码。解向量b是由{-1,1}组成的二进制序列,无需编码。
(3)初始化种群。将经匹配滤波器并经判决后的结果作为初始种群中的一个个体B1送入模拟退火遗传算法多用户检测器,其余N-1个个体均由其随机扰动产生。
(4)适应度函数评价。采用与简单遗传算法多用户检测相同的适应度函数,计算种群中每个个体的适应度函数值f。
(5)交叉。随机选取两个个体Bi和Bj进行交叉,产生新个体Bi′和Bj′,计算f(j)和f(i),并按Metropolis准则计算接收概率,若P=min{1,exp[f(i)-f(j)/tk]}≥random[0,1],则接收新解,否则保持原状态。
(6)对交叉后的个体进行变异操作,按与(5)中同样的判决方法判断是否接受变异后产生的新个体。
(7)判断是否满足收敛条件。若已经达到预先设定的最大遗传代数,则迭代过程结束,输出最优解;否则有ti+1=?坠ti,?坠《1,并转至(4)进行下一步的迭代寻优工作。
从上述内容可知,与基于复杂矩阵算法的传统多用户检测器相比,基于模拟退火遗传算法的多用户检测器算法降低了难度。
3 仿真研究
利用MATLAB仿真平台将基于模拟退火遗传算法的多用户检测器(SAGA)与传统最佳多用户检测器(OMD)、基于遗传算法的多用户检测器(GA)以及其他典型多用户检测算法进行性能比较,以误码率随信噪比的变化曲线作为比较参数。