其中,{Tk}渐趋于0的退火温度,Tk=1/ln(k/T0+1),T0为起始温度。

(3)自适应度交叉概率和变异概率

GA的交叉概率Pc与变异概率Pm对其性能影响很大,它们的选择直接影响算法的收敛性。在进化初期,为了避免个别适应度高的个体迅速繁殖,出现早熟现象,Pc和Pm不宜过小,以增加种群的多样性;在进化后期,个体接近最优解时,Pc和Pm不宜过大,以避免个体长期无法达到最优解[8]。文中的Pc和Pm根据模拟退火思想按照如下公式进行自适应调整:

其中T′类似于模拟退火中的温度T,为进化代数的倒数;gen为设定的进化总代数。在进化初期T′较高,则Pc和Pm较大,以利于种群的多样性;随着进化代数的增加,T′逐渐减小,Pc和Pm渐进减小,便于个体向最优解靠近。

从上述内容可知,将模拟退火应用于遗传算法中,在优选交叉和变异个体的过程中通过加入一定的“扰动”以达到保持群体中位串多样性和位串之间的竞争机制,从而克服算法易陷入局部极小点的问题,使得搜索沿着全局最优化方向趋进。

2 模拟退火遗传算法在多用户检测技术中的应用

模拟退火算法与遗传算法相结合,取长补短,形成了模拟退火遗传算法。多用户检测是一个NP完备问题,将模拟退火遗传算法用于多用户检测中是可行的。图2为模拟退火遗传算法多用户检测原理框图,由滤波器和多用户检测器两部分组成。它有 k个输入和k个输出。