今天小编要和大家分享的是测量仪表相关信息,接下来我将从基于提取在线实时采集的边缘检测算法的研究,linerlayout背景图失真!这几个方面来介绍。

测量仪表相关技术文章基于提取在线实时采集的边缘检测算法的研究linerlayout背景图失真!

测量仪表相关技术文章基于提取在线实时采集的边缘检测算法的研究

1 引言

边缘是指局部强度变化最显著部分.主要存在于目标与目标、目标与背景、区域与区域之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。如何快速、准确提取图像的边缘信息一直是国内外研究的热点,目前已有多种边缘检测算法,其中最经典的算法就是Sobel算法。该算法由于计算量小、速度快,广泛应用于诸多领域,但其检测方向有限,抗噪能力较低,因此,该算法也具有一定的局限性。而且,实际应用中,像素级已无法满足精度要求,只能采用亚像素级的细分算法。

这里给出扩展的4个方向的Sobel算子,即采用4个方向的模板,细化处理其梯度方向图,鉴于插值法计算量小、精度高的特点,故选用二次多项式插值法实现亚像素细分。

2 扩展的Sobel细化算子

2.1 扩展的两个模板

图像目标的边缘是灰度不连续性的反映,其种类可粗略区分为:阶跃性边缘和层顶状边缘。前者的两边像素点灰度值显著不同,后者位于灰度值从增加到减少的变化转折点。为了更准确描述图像边缘点.减少噪声对其检测结果的影响,提高算子的抗噪能力,在水平、垂直模板的基础上重新构造2个3x3的模板,模板各个位置的权重是由该位置到中心点的距离以及该位置在模板中所在的方向决定的,等距离的点具有相同权重,如图l所示。这里选用最高输出模板所对应的边缘梯度值作为像元边缘梯度强度。