在使用计算机或者单片机做信号处理方面的工作时,要求信号在频域和时域都是离散的,且都是有限长。离散傅里叶级数满足离散要求,但是在时域、频域虽然都是周期函数其也都是无限长的,所以在时域、频域中各取1个周期,可以得到傅里叶变换对:
再根据快速傅里叶变换(FFT)理论,利用WN形成“蝶形单元”,经过分组、码位倒序等步骤计算,这样即可方便地通过计算机或单片机进行变换求其频谱。在此指出的检测谐波电流的仪器主要系统就是通过FFT方法计算出相应的谐波分量及其参数。
1.1 分数谐波的测量
可以看出,利用式(4)进行FFT可以准确地分离出被测电流中整数次谐波信号。正如在前文中所指出的,电弧炉系统中不仅包括整数次谐波,还包括大量分数谐波和间谐波。例如,对于频率为50 Hz的电网电流信号,其周期为20 ms,电弧炉作为负载可能还会产生出频率在50 Hz以下或者不为50 Hz整数倍的谐波。如果在检测时采样的时间正好为一个周期20 ms,则频率低于50 Hz的谐波信号就无法检测出来,在这里,可以通过延长采样时间的方法分理出分数次谐波。具体方法:对于基波频率为Ω,周期为T的电网电流信号来说,如果现在需要检测的是频率为Ω0/l的谐波分量(l为不为零的整数),则采样时间必须为T1=lT。这样采样出来的序列可以看成是频率为Ω1=Ω/l的电流信号的1个周期;如果系统抽样频率不变,仍然是每T时间内抽样N个点,即T=NTs,则T1=lT=lNTS,可得: