Bernsen给出一种比较简单的局部阈值算法。它是对每个像素确定以它为中心的一个窗口,计算窗口内灰度级的最大值和最小值,并取其平均值作为阈值。

具体实现步骤是:

(1)取图像的四角为图像的背景,取其平均值作为背景值,大于此值的作为目标,目标灰度的平均值作为目标值。

(2)在第t步,分别计算背景和目标的灰度均值EB’和Eo’,其中在第t步将图像分割为背景和目标的阈值是T’,它是在前一步确定的。

可见,阈值分割实际上就是根据某个判决准则来确定最佳阈值T的过程。为达到快速分割目标的目的,在这里根据图像的统计特性来确定门限,并根据所要求的虚警概率对初始选择阈值进行不断修正。具体算法如下:

对待检测图像求其统计特征,即计算均值m和方差σ,从而计算初始阈值T1。即:

式中,M,N分别为待检测图像的行数和列数;m为矩形邻域窗口内原图像的均值;σ为标准差;k为系数,可通过实验得到。为了保证对图像中小目标尽可能高的检测概率,同时又为了尽量虚警概率,将图像的SNR作为一个考虑因素,取k为图像的信噪比值。

1.3 判读脱靶量计算

在视频判读中,脱靶量的测量结果对于检验和评估导弹性能起着关键作用。下面简要介绍脱靶量计算原理。如图2所示。