RGB三基色传感器是通过测量构成物体颜色的三基色的反射比率实现颜色检测的,由于其精密度极高,所以能准确区别极其相似的颜色,甚至是相同颜色的不同色调。本设计方案选用的是MCS系列的RGB三基色颜色传感器。
1.2 照明光源
本设计要求的测量光谱范围为380nm~750nm,而白色光基本能够覆盖此光谱范围,因此选择白色贴片发光二极管照明。用白色光照明代替多种单色光模拟白光照明,从理论和具体实践上都能提高照明效果,并且简化设计方法。多个白色发光二极管组成环形45°(照明)/0°(测量)环形照明系统。
1.3 信号处理电路
颜色传感器的输出信号一般是纳安级的微小电流,这给测量带来了不便。首先,要将微小的电流信号转换为电压信号,以便后续A/D转换电路和单片机进行处理,同时还要完成放大的过程。如何在尽量减小失真的情况下完成光电流信号的转换和放大,是测量工作中必须要解决的问题。
1.3.1 微电流测量原理
微电流信号源可以看作是内阻非常大的电流源IS,具有接地端的微电流测量原理如图2所示。对于输入阻抗和放大倍数均无穷大的理想运算放大器来讲,输出电压V0=ISRf。理论上,只要电阻Rf取得足够大,即使电流IS很小,也可得到较大的输出电压V0。
实际上,运算放大器输入阻抗不是无穷大,电阻Rf的增大要受到运算放大器输入阻抗的限制。考虑到偏置电流IB对被测电流IS的分流,则V0=-(IS-IB)Rf,如果IB大于IS,则IS无法测量。
影响微电流测量灵敏度的首要因素是运算放大器的偏置电流IB,其次是噪声电压和零点漂移。要实现微电流测量,运算放大器要满足:①偏置电流IB《被测电流IS;②输入阻抗RI》》反馈电阻Rf;③增益、共模抑制比高;④失调电压及漂移小;⑤噪声小。