1.3.2 电路分析和设计

在器件选择方面,运放的输入偏置电流IB是主要误差源之一。本方案选用AD公司生产的AD8608芯片作为电流转换放大的主芯片,如图3所示。为了能测量纳安级电流,图2中的Rf要选1010数量级的电阻,这样大的电阻精度低,稳定性差,噪声也大,因此在图3中用小电阻组成T型网络代替高阻Rf,并在运放的输出端接上RC滤波电路,用来驱除高频噪声信号和斩波尖峰噪声的干扰,对提高电路的稳定性是很有好处的,但一般时间常数较大,不适合测量快变信号。C与R组成反馈补偿网络,以降低带宽,防止T型网络与C1相移产生自激振荡。

1.3.3 提高性能的措施

(1)不接运算放大器的平衡电阻

实验证明,在高内阻电流源的微电流放大器中,运算放大器接平衡电阻不仅很难使输入电阻平衡,反而会增加电路噪声,所以图3中AD8608运算放大器同相端不接平衡电阻,而是直接接地。

(2)降低运算放大器的工作温度

由运算放大器的温度特性可知,温度每升高10℃,运算放大器的偏置电流将增加1倍,从而降低微电流测量的灵敏度和准确度。为此,应尽可能地降低电源电压.增大负载电阻(大于10kΩ),以减小运算放大器的工作电流,降低工作温度。

(3)减小PCB的漏电流

在微电流测量中,提高PCB的绝缘强度和减少漏电流非常重要。通常意义上等效于绝缘的纳安级的漏电流就会对测量结果造成严重的影响,所以要采取措施严格控制PCB板的漏电流:选用漏电流远小于pA级的高绝缘电路板,如环氧玻璃板;输入信号采用绝缘好、不产生静电、吸湿性小的聚四氟乙烯接线柱;在电路板上用接地屏蔽环将运算放大器的同相、反相输入端包围起来并接地,使其等电位,保证它们之间漏电流为零;电路安装好后,清除残留杂质,元件和电路板做清洁、干燥、防潮处理。