值得注意的是,铂铑30-铂铑6热电偶(B型)在整个测试范围中的传输特性曲线并不是单调递增的。由于在0~100℃段,传感器的分度函数呈现U型分布,例如:与输出热电动势E=0 mV对应的测试温度可能是0℃,也可能是40℃。所以,在低温段,该传感器传递函数的反函数是不存在的,影响了该部分非线性校正的效果;但在中高温段(400~1800℃)传感器输出的具有明显的单调特性,因此,在该温度段用逆模型进行校正取得了相当理想效果。图4所示的实际校正结果也表明:除低温段外,传感器系统的校正值与真实值非常接近。
4、 结束语
通过构建传递函数的逆模型可实现传感器的非线性校正,提高传感器的测量精度。本文针对实际问题,建立幂级数多项式补偿模型,并利用LS-SVM的回归算法辨识模型参数,实现传感器的非线性校正。
本文方法是现代技术(人工智能)和传统方法(最小二乘法)的一种结合,与神经网络为代表的人工智能方法不同,本文方法并没有利用非线性学习能力逼近模型的输入-输出特性;而是利用LS-SVM线性回归算法进行模型参数辨识,因此,可给出补偿器模型的解析形式数学表达式。最后,实际铂铑30-铂铑6热电偶(B型)非线性校正实例验证了本文方法的可行性。
责任编辑:gt
关于MEMS,传感技术就介绍完了,您有什么想法可以联系小编。