今天小编要和大家分享的是制造,封装相关信息,接下来我将从要提高功率密度,除改进晶圆技术之外,还要提升封装性能,smt主要元件封装图这几个方面来介绍。

制造,封装相关技术文章要提高功率密度,除改进晶圆技术之外,还要提升封装性能smt主要元件封装图

制造,封装相关技术文章要提高功率密度,除改进晶圆技术之外,还要提升封装性能

Neil Massey,安世半导体国际产品营销经理

汽车和工业应用都需要不断提高功率密度。例如,为了提高安全性,新的汽车动力转向设计现在要求双冗余电路,这意味着要在相同空间内容纳双倍的元器件。再举一个例子,在服务器群中,每平方米都要耗费一定成本,用户通常每18个月要求相同电源封装中的输出功率翻倍。如果分立式半导体供应商要应对这一挑战,不能仅专注于改进晶圆技术,还必须努力提升封装性能。

总部位于荷兰的安世半导体是分立器件、MOSFET器件、模拟和逻辑集成电路领域的领导者,该公司率先在-功率封装(LFPAK无损封装)内部采用了全铜夹片芯片贴装技术,目的是实现多种技术优势(电流能力、RDSon、热特性等)。

专为提高功率密度设计的LFPAK封装系列

LFPAK封装系列用于提高功率密度。其主要特点是在封装内部使用了全铜夹片,在外部使用了鸥翼引脚。安世半导体在2002年率先推出LFPAK56封装 - 它是一款功率SO8封装(5mm x 6mm),设计用于替代体积更大的DPAK封装。现在,该公司提供了一系列不同尺寸的封装,包含单双通道MOSFET配置,可涵盖众多不同应用。最近,安世半导体发布了LFPAK88,这是一款8mm x 8mm封装,针对较高功率的应用而设计,可取代体积更大的D²PAK和D²PAK-7封装。

图1:LFPAK分立式MOSFET封装系列

夹片粘合封装与焊线封装:功率密度优势

LFPAK器件的体积小于老式D²PAK和D²PAK-7器件,同时实现了功率密度的明显提升。

图2:LFPAK88的占位面积小于D²PAK

上图显示了LFPAK88的相对占位面积大小,与D²PAK器件相比减小了60%;另外LFPAK88器件的高度更低,因而总体积减小了86%。