布线工程师、系统工程师、信号完整性工程师和电源设计工程师还可以将IR压降分析结合在约束管理器(constraint manager)中,作为对PCB上每一个电源和地网表进行设计规则核查的最终检验工具(DRC)。这种通过自动化软件分析的设计流程可以避免靠目测,甚至经验所不能发现的复杂电源供电系统结构上的布局布线问题。图2展示了IR压降分析可以准确地指出一高性能PCB上电源供电系统中关键电压电流的分布。
交流电源地阻抗分析
很多人知道一对金属板构成一个平板电容器,于是认为电源板层的特性就是提供平板电容以确保供电电压的稳定。在频率较低,信号波长远远大于平板尺寸时,电源板层与地板的确构成了一个电容。
然而,当频率升高时,电源板层的特性开始变得复杂了。更确切地说,一对平板构成了一个平板传输线系统。电源与地之间的噪声,或与之对应的电磁场遵循传输线原理在板之间传播。当噪声信号传播到平板的边缘时,一部分高频能量会辐射出去,但更大一部分能量会反射回去。来自平板不同边界的多重反射构成了PCB中的谐振现象。
图4:三种设置情况下 PowerSI计算得到的PCB输入阻抗曲线。(a)不包含电源整流模块;(b)包含电源整流模块;(c)包含电源整流模块和一些去耦电容。在交流分析中,PCB的电源地阻抗谐振是个特有的现象。图3展示了一对电源板层的输入阻抗。为了比较,图中还画了一个纯电容和一个纯电感的阻抗特性。板的尺寸是30cm×20cm,板间间距是100um,填充介质是FR4材料。板上的电源整流模块用一个3nH的电感来代替。显示纯电容阻抗特性的是一个20nF的电容。从图上可以看出,在板上没有电源整流模块时,在几十兆的频率范围内,平板的阻抗特性(红线)和电容(蓝线)一样。在100MHz以上,平板的阻抗特性呈感性(沿着绿线)。到了几百兆的频率范围后,几个谐振峰的出现显示了平板的谐振特性,这时平板就不再是纯感性的了。
至此,很明显,一个低阻的电源供电系统(从直流到交流)是获得低电压波动的关键:减少电感作用,增加电容作用,消除或降低那些谐振峰是设计目标。