今天小编要和大家分享的是模拟技术相关信息,接下来我将从ISL55210的有源平衡-不平衡变压器方案的设计范围和性能,上海沪予 rf54-200l-6/5,敞开式电阻器,封闭式电阻器这几个方面来介绍。
模拟技术相关技术文章ISL55210的有源平衡-不平衡变压器方案的设计范围和性能
虽然所有全差分放大器(FDA)都能将单端输入信号转换为差分输出,但迄今还没有一种表现出足够的性能,可在没有输入点附加电阻器接地时提供良好输入阻抗匹配。如果能够消除电阻器接地,同时仍然提供极宽频带阻抗匹配,则可提供相当低噪声的实现。
第1部分综述了使用一个FDA实现单端转差分的两个选择,其中只使用一个FDA而没有平衡-不平衡变压器的典型方案包括一个附加电阻器接地,以获得部分输入阻抗匹配。第2部分将消除该电阻器,以复用新器件的独特宽频带共模带宽,并显示该简化型“有源平衡-不平衡变压器”实现的潜在设计范围和性能。
FDA输入提供的有源输入匹配
认真观察图4(第1部分)中的输入网络来寻找信号通路,输入阻抗与50Ω值的实际匹配并非一目了然。该电路的一个有趣方面是,由于共模回路的作用,朝Rg1看的输入阻抗高于实体电阻器值。
如果输出Vcm电压在单端输入信号改变时保持固定,则求和点的平均输入电压必须随输入电压而改变。所以要增加输入电压就要同时增加Rg1另一侧的电压。这具有阻碍电流流入Rg1元件的效应,使得该通路表现为较之于期望更高的阻抗。正是典型FDA方案的有源输入阻抗方面提供了该拓扑,所以难以对闭合式解决方案进行分析。
如果设计人员想获得与Rs匹配的输入阻抗和从Rg1至差分输出电压的目标增益Av,一种方法当是Rf元件选择只是为了满足其他约束条件时求解所需的Rt元件。该结果是由式(1)给出的Rt的二次解(参考7)。
式1
该式在设计需要选择反馈电阻器(Rf)时极为有用。例如,使用一个基于电流反馈(CFA)的FDA来实现图4就希望使Rf接近建议值,以保证最佳频率响应。其他情况可能包括,出于载荷考虑而需要避免非常低的值和/或出于噪声缘故而需要避免非常高的值。无论是哪种情况,使用式1求解图4中的Rt终端元件,然后代入式2和式3,获得Rg1和Rg2值。