大功率CPU调节器设计所面临的严峻挑战也许就是成本问题,在过去5年当中,CPU核电压调节器的每相价格降低了4倍甚至更多。
电源控制的基本要素
所有多相电压调节器都采用这种或那种形式的PWM结构。大多数电压调节器工作在固定频率,由时钟信号触发高边MOSFET (图1中的QHI)导通,使输入电源开始对电感充电。
图1. 简化的单相降压调节器
当控制环路确定应该终止“导通脉冲”时,高边MOSFET断开,低边MOSFET (QLO)导通,电感对负载放电。由于脉冲前沿(高边开通)时间固定(由内部时钟设置),而脉冲后沿(高边断开)则根据控制环路和实时状态变化,因此这种PWM控制类型称为后沿调制。高边MOSFET导通时间相对于时钟周期的百分比称为占空比(D),该占空比在稳定状态下等于VOUT/VIN。
在电压控制模式下(参见图2),输出电压(或其比例)与固定的内部基准电压进行比较。产生的误差信号再与内部固定的锯齿波(或斜坡)信号进行比较。该斜坡信号与时钟脉冲同时触发,而且只要斜坡信号低于误差电压,PWM比较器的输出就一直保持为高电平。当斜坡信号高于误差电压时,PWM比较器的输出变为低电平并终止导通。电压环路通过适当的调节控制电压(VC)以及由此产生的占空比,使输出电压(图3)保持恒定。
图2. 简化的电压模式降压调节器
图3. 电压模式波形图
峰值电流模式(参见图4)将电流检测引入控制环路,用电感电流斜坡取代了电压模式下的斜坡信号。与电压模式类似,按照固定频率开通高边MOSFET,使电感电流线性上升。当峰值电感电流等于误差电压时,导通脉冲终止,高边MOSFET断开。这种方式需要一个电压环路和一个电流环路,电压环路通过适当调整由电流环路测量的电感峰值电流,来保持输出电压的稳定。
图4. 简化的峰值电流模式降压调节器
需要考虑及权衡的事项
正如人们所料,每种方法都存在其优缺点。以下各节将对电源设计人员必须考虑的因素加以说明。
噪声抑制