电压模式具有良好的噪声抑制能力,这是因为在设计控制IC时,可以使斜坡信号的大小与实际信号一样大。输出电压是返回到控制器的唯一敏感信号,因此,电压模式相对容易布局。
除了输出电压外,峰值电流模式还需要返回一个电流检测信号,可以由负载电流通路的取样电阻提供(参见电流均衡)。若要最大限度地降低I2R损耗,检流电阻的阻值要尽可能小一些。因此,取样信号往往比电压模式的内部斜坡信号小一个数量级。值得注意的是,应确保信号不受外部噪声源的干扰。在实际应用中,峰值电流模式非常通用,而且,采用标准的的电路板布局原则,其布局布线并不困难。
输入电压调节
对于输入电压的变化,电压模式的响应较慢。要响应输入电压的变化,首先必须由输出电压误差反映出来,然后经过电压反馈环路进行校正。因此,响应时间受控制环路的带宽限制。目前,大多数电压模式调节器均包含可检测输入电压变化的电路,并通过相应地调节其斜坡信号提供“前馈”。然而,这增加了控制器的复杂性。峰值电流模式的占空比由电感电流斜坡控制,是输入电压和输出电压二者的函数,峰值电流模式的逐周期电流比较可以提供固有的前馈,因而能够快速响应输入电压的变化。
电流均衡
两相或多相电压调节器必须动态均衡各相之间的电流,防止某一相电流不成比例。每相电流检测可通过监测高边或低边MOSFET的电流来实现,或通过检测每相流过检流电阻的电流来实现。检测MOSFET的电流成本低廉,因为它利用了现有的电路元件。但是,由于MOSFET电阻随工艺和温度明显变化,因此精度较低。利用检流电阻可以实现精确检测,但增加了成本,并降低了电源转换效率。
获取每相电流信息的另一种方法是利用电感的直流电阻(DCR)作为检流元件。由于这种方法利用了现有的电路元件,并由DCR容限来保证合理的精度,因此不增加任何成本。将串联的电阻、电容跨接在电感两端,RC时间常数与L/DCR时间常数相匹配。通过检测电容器两端的电压,即可很好地表征电感电流的直流和交流特性。目前这种方法在电压模式和电流模式CPU供电调节器中相当常用。
选择电压模式和电流模式是另一个需要权衡的问题。由于电压模式只在控制环路中使用电压信号,因此该模式不能控制各个电感的相电流,而这恰好是实现均流的必要条件。峰值电流模式本身可提供电流均衡,因为该模式利用电感电流信号作为控制电路反馈的一部分。目前多相电压模式调节器必须再增加一个控制环路来实现均流,这样就增加了IC的复杂性,并带来其它需要权衡的问题,见电压定位和瞬态响应部分。