其中,GNOISE为应用的噪声增益。
1 ppm非线性度相当于–120 dBc谐波失真,比例为0.0001%。假定一个放大器使用双极性输入级,GBW为15 MHz,作为缓冲区的输出为5 V p-p,通过方程式2可得知该线性度的最大频率仅为548 Hz。上述的假设前提是放大器在较低频率下的线性度最低。当然,当放大器提供增益时,噪声增益增加,且–120 dBc的频率会下降。
阈下MOS输入级支持的–120 dBc频率最高为866 Hz,平方律MOS最高支持1342 Hz,退化双极最高支持1500 Hz。智能双极的失真不符合预测模式,人们必须根据数据手册进行估算。
我们可以使用更简单的公式
其中,K可从运算放大器数据手册的失真曲线中找到。
附加一点,许多运算放大器都是使用轨到轨输入级。大多数放大器通过两个独立的输入级都能实现此功能,即在输入共模范围内,不同输入级之间可以转换。这种转换会导致失调电压变化,还可能导致偏置电流、噪声乃至带宽变化。此外,基本上还会导致输出时出现开关瞬变现象。如果信号总是穿过交越区,那么则不能对低失真应用使用这些放大器。不过,对于相反的应用场合可以使用它们。
我们还没有讨论压摆增强型放大器。这些设计在差分输入较大的情况下不会耗尽电流。遗憾的是,差分输入较小的场合仍会导致gm出现与所讨论的输入幅度类似的变化,并且低失真仍需要有较大的频率环路增益。
由于我们要寻找的是ppm级的失真度,所以我们不会以接近压摆率限值的任何方式运行放大器,所以十分异常的压摆率不是ppm级频率线性度的重要参数,只考虑GBW即可。
前面,我们讨论了单极补偿设计模式的开环增益。并不是所有运算放大器都以该方式提供补偿。通常,开环增益可从数据手册的曲线中找到,而方程式中的GBW/(GNOISE × fSIGNAL)就是频率的开环增益。
增益节点误差
接下来,我们来看图1中的R1和R2。这些电阻连同输入gm提供放大器的开环直流增益:gm × (R1||R2)。原理图中绘制的这些电阻带有可变的非线性删除线。这些电阻的非线性度体现了放大器的空载失真度。而且,R1会从正电源施加影响,以致于直流正电源电压抑制比(PSRR+)约等于gm × R1。同理,R2负责PSRR–。请注意,为什么PSRR的幅度几乎等于开环增益?CCOMPP和CCOMPM向R1和R2注入类似的电源信号;它们在频率范围内设置PSRR+和PSRR–。
增益适度(《《106)的放大器的线性度可能很好,但适度增益会限制增益精度。