电源端口可能会导致失真。如果输出级驱动的负载较大,其中某个电源就会提供负载电流。在一定频率下,远端电源的远程调制能力可能很小,以致于运算放大器的旁路电容成为实际的电源。通过旁路电容后,电源电流下降。下降幅度取决于ESR、ESL和电抗,并且它们会造成电源干扰。由于输出为AB类,所以只有一半的输出电流波形会调制电源,形成平稳的谐波失真。频率范围内的PSRR可降低电源干扰。例如,如果我们观察到电源干扰为50 mV p-p,并希望PSRR抑制电源输入干扰使其在输出端降至低于5 µV p-p,则PSRR在信号频率下需达到80 dB。估算PSRR(f)~Avol(f),GBW为15 MHz的放大器在低于1500 Hz的频率下则会拥有充足的PSRR。
输出级失真
图1中的最后一项是输出级,输出级在本文中被视为缓冲区。图7展示了一个典型的输出级转换函数。
图7.不同负载的输出缓冲区的转换函数
对于不同的负载,我们可看到四种误差。首先是削波:尽管假设该输出级的标称增益为1,但它不完全是轨到轨输出级。这种情况下,甚至空载输出时,每个电源轨也会削波100 mV。随着负载增加(降低负载电阻),输出电压会逐步削减。显然,削波会严重影响失真,而且必须降低输出摆幅才能避免削波。
下一种误差是增益压缩,当转换函数的曲率达到信号极限情况时,我们会看到这种现象。随着负载增加,在电压早期阶段就会出现压缩。同削波一样,在这种机制下,通常无法实现ppm级失真。这种压缩通常是由输出级较小而难以满足输出需要的电流所致。最好的解决方案是,使放大器提供的线性、无压缩最大输出电流仅约为输出短路电流的35%。
另一种显著的失真来源在于交越区约为VIN = 0。空载时,交越扭结可能不那么明显。但随着负载增加,我们可看到绿色曲线的扭结增加。估算交越失真通常需要强大的电源电流。
最后一种失真比较难以理解。由于有些放大器电路输出正电压和电流,还有一些输出负信号,所以无法保证它们具有相同的增益,特别是在带负载时。图7显示了负载时负信号的增益减少情况。
通过环路增益可降低所有这些失真。如果输出级的失真为3%,那么环路增益需要为30,000才能达到–120 dBc电平。当然,这种情况发生在GBW/(30,000 × GNOISE)频率以下,对于15 MHz的放大器通常为1 kHz机制。
有些输出级的失真与频率有关,但也有许多输出级与频率无关。开环增益可抑制输出级失真,但该增益会随频率而下降。如果输出失真不随频率而变化,则增益损耗会产生输出失真,并随频率而线性增加。同时,输入失真会导致总体输出失真随频率而增加。这种情况下,总体闭环输出失真可能主要为输入失真,从而掩盖输出级失真的影响。