今天小编要和大家分享的是连接器相关信息,接下来我将从解析连接器半导体材料之氮化镓(GaN)篇,氮化镓半导体材料行业研究报告 据yole预测,2020年末,gan射频器件这几个方面来介绍。

连接器相关技术文章解析连接器半导体材料之氮化镓(GaN)篇氮化镓半导体材料行业研究报告  据yole预测,2020年末,gan射频器件

连接器相关技术文章解析连接器半导体材料之氮化镓(GaN)篇

半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。

解析连接器半导体材料之氮化镓(GaN)篇

相对于半导体设备市场,半导体材料市场长期处于配角的位置,其中半导体材料市场的60%都是芯片制造材料,以硅晶圆和光掩膜为主,此外还有湿化学试剂、溅射靶等。但随着芯片出货量增长,材料市场将保持持续增长。

一开始,日本是世界最大的半导体材料市场,随后中国台湾、韩国等地区也逐渐开始崛起,材料市场的崛起体现了器件制造业在这些地区的发展。晶圆制造材料市场和封装材料市场双双获得增长,未来增长将趋于缓和,但增长势头仍将保持。

第三代半导体材料崛起

如今,半导体材料已经发展到第三代,逐代来看:第一代半导体材料以硅和锗等元素半导体材料为代表。其典型应用是集成电路,主要应用于低压、低频、低功率晶体管和探测器中,在未来一段时间,硅半导体材料的主导地位仍将存在。但是硅材料的物理性质限制了其在光电子和高频电子器件上的应用,如其间接带隙的特点决定了它不能获得高的电光转换效率。且其带隙宽度较窄(1.12 eV)饱和电子迁移率较低(1450 cm2/V·s),不利于研制高频和高功率电子器件。

第二代半导体材料以砷化镓和磷化铟(InP)为代表。砷化镓材料的电子迁移率是硅的6倍,具有直接带隙,故其器件相对硅器件具有高频、高速的光电性能,公认为是很合适的通信用半导体材料。同时,其在军事电子系统中的应用日益广泛且不可替代。然而,其禁带宽度范围仅涵盖了1.35 eV(InP)~2.45 eV(AlP),只能覆盖波长506~918 nm的红光和更长波长的光,而无法满足中短波长光电器件的需要。由于第二代半导体材料的禁带宽度不够大,击穿电场较低,极大的限制了其在高温、高频和高功率器件领域的应用。另外由于GaAs材料的毒性可能引起环境污染问题,对人类健康存在潜在的威胁。