在人脸识别技术到来之前,指纹识别、虹膜识别等生物特征识别方式已经在生活中得到广泛运用。不过受访人士表示,相比较而言,人脸识别最大的优点在于“非接触性”,这可以大大提升系统响应速度,提高使用便捷度,同时避免指纹等接触式识别产生的疾病传播等卫生隐患。

此外,“非配合、非侵入”式特征,意味着可以在不需要使用者配合的情况下采集到数据,这有利于公安在安防等领域的应用。

人脸识别技术还越来越用于娱乐。面部识别解锁功能成为平板电脑“卖点”、智能相册可通过识别人脸进行照片分类、“美颜”类APP自动识别人脸并为其“化妆”……例如,一款火爆的“FACE U”软件,可以将用户头像“变成”大圣、兔子等形象,与朋友圈、微博等社交平台的朋友互动。

业内人士认为,智能家居将会是未来人脸识别的应用场景之一,智能防盗门在主人站在门口时才会打开,智能电视能识别你是谁,并推送给你常看的节目,甚至服务机器人也可以根据对象身份的不同提供相应的服务。未来人脸识别技术会让用户信息的深度挖掘成为可能,商家可以对会员的购买行为进行分析,进而有针对性地安排商业布局或促销活动。

技术准确度突破可期

专家认为,未来,人脸识别技术还会继续突破。一方面,准确度、安全性会继续提升,针对整容、双胞胎等特殊情况的处理能力也在提升。另一方面,人脸识别能够处理的数量级也会继续扩大。当技术已经进步到可以在上亿张照片的数据库中提取、比对某张人脸时,则应用场景会逐步扩大。

据颜水成介绍,通常人脸识别包含以下环节:相机或者专业设备先采集到图片,人脸检测技术定位图片中的人脸,然后从中再定位诸如眼角、鼻尖、嘴角、脸部轮廓线等特征,进行包括光线补偿或者遮挡物剔除等校正。再用深度学习算法进行身份特征提取,跟数据库中的人脸特征做比对,以识别人脸身份。

业内人士认为,其中的技术关键在于通过不同脸部图像上的特征关键点和面部表情网,找出彼此之间的关联,最终判定这些图像是否为同一个人。但人脸是变化的,不同角度、不同妆容都能影响特征关键点的抓取。

此外,“刷脸支付”是在线下公共设备和开放环境下进行,真实场景复杂多变,且安全性要求更高。生物识别技术对人们的生活带来更多便利还是挑战?

疑惑一:“刷脸”如何确保精准度?

在衡量人脸识别能力时,很多公司都会宣称其准确率超过“99%”。对此,长期研究机器学习的西安交通大学电信学院特聘教授、国家“千人计划”专家龚怡宏表示,这里的准确率指的是在一些世界知名人脸数据库比对中取得的成绩,但在现实运用中,这种准确度要大打折扣。