商汤科技联合创始人杨帆也认为,这些准确度是在一定前置条件下取得的,但现实应用场景复杂多变,人群样本更大,不同光线、姿态、分辨率等条件都可能给机器识别带来困难。

不过,这也不代表技术要达到100%准确率才可以使用。“世界上没有完美的技术,任何技术都是有错误率和瑕疵的,但是如果在特定的场景下,技术的准确度能够满足要求、错误带来的风险可以承受,那它就是有价值的。”颜水成说。

苹果方面介绍,新机iPhone X的面容ID功能利用由点阵投影器、红外镜头和泛光感应元件组成的先进原深感摄像头系统,在A11仿生强劲动力的支持下可绘制面谱并识别面容。该功能会投射30000多个肉眼不可见的红外光点,然后将得到的红外图像和点阵图案传输给神经网络,创建用户脸部的数学模型,再将这些数据发送至安全隔区,以确认数据是否匹配。而且,用户的样貌随着时间而改变,技术也能随之进行调整适应。

蚂蚁金服介绍,支付宝在肯德基KPRO的点餐机上配备了3D红外深度摄像头,在进行人脸识别前,会通过软硬件结合的方法进行活体检测,来判断采集到的人脸是否是照片、视频或者软件模拟生成的,避免各种人脸伪造带来的身份冒用情况。

疑惑二:双胞胎、过度化妆和整容能分辨吗?

“人脸的角度、光线、表情、年龄、化妆、遮挡、照片质量等会影响我们的判断,并且随着数据库样本增大,两个不同人长得像的概率会快速上升。”陈继东提出了生物识别技术面临的难题,不过,他认为深度学习会让计算机更聪明,能克服这些困难。

颜水成表示,面对双胞胎或者整容前后等特殊情况,机器能否识别,要看具体情况。比如整容幅度过大,机器无法识别是有可能的。此外,脸部信息也会随着年龄增长而改变。如果到了机器无法识别的程度,使用者只需去系统更新脸部照片就可解决。

为了提高识别率,不少应用场景都需要用户采用除人脸识别技术外的双重验证。陈继东表示,交叉验证方式进一步提升识别率,即使是双胞胎也“判若两人”。在金融等对误识别率容忍极低的领域中,单一识别要素即使精准度再高仍然会有漏网之鱼,因此需要结合多因子综合验证。目前人脸识别准确率已远超肉眼,而且有活体检测算法来判断采集到的人脸信息是否为照片、视频等冒充。“即便出现账户被冒用的极小概率事件,支付宝也会通过保险公司全额赔付。”

疑惑三:用户隐私如何保护?

有专家指出,人脸特征与指纹、虹膜相比,是一个具有弱隐私的生物特征。例如,很多人都会发自拍照,也是相对公开的特征。如何保证用户数据安全尤为关键。