1.交流感应伺服电机的矢量控制
矢量控制理论最先是在1971年由德国学者F.Blachke提出的。在伺服系统中,直流伺服电机能获得优良的动态与静态性能,其根本原因是被控制只有电机磁通Ф和电枢电流Ia,且这两个量是独立的。此外,电磁转矩(Tm=KT Ф Ia)与磁通Ф和电枢电流Ia分别成正比关系。因此,控制简单,性能为线性。如果能够模拟直流电机,求出交流电机与之对应的磁场与电枢电流,分别而独立地加以控制,就会使交流电机具有与直流电机近似的优良特性。为此,必须将三相交变量(矢量)转换为与之等效的直流量(标量),建立起交流电机的等效模型,然后按直流电机的控制方法对其进行控制。
下图所示三相异步交流电机在空间上产生一个角速度为ω0的旋转磁场Φ。如果用图b中的两套空间相差900的绕组α和β来代替,并通以两相在时间上相差900的交流电流,使其也产生角速度为ω0的旋转磁场Φ,则可以认为图a和图b中的两套绕组是等效的。若给图c所示模型上两个互相垂直绕组d 和 q,分别通以直流电流id 和iq ,则将产生位置固定的磁场Φ,如果再使绕组以角速度ω0旋转,则所建立的磁场也是旋转磁场,其幅值和转速也与图a一样。
这种变换是将三相交流电机变为等效的二相交流电机。上图a所示的三相异步电机的定子三相绕组,彼此相差1200空间角度,当通以三相平衡交流电流 iA, iB, iC 时,在定子上产生以同步角速度ω0旋转的磁场矢量Φ。三相绕组的作用,完全可以用在空间上互相垂直的两个静止的α、β绕组代替,并通以两相在时间上相差900的交流平衡电流 iα 和 iβ ,使其产生的旋转磁场的幅值和角速度也分别Φ和ω0,则可以认为上图a、b中的两套绕组是等效的。
应用三相/二相的数学变换公式,将其化为二相交流绕组的等效交流磁场。则产生的空间旋转磁场与三相A、B、C绕组产生的旋转磁场一致。令三相绕组中的A相绕组的轴线与α坐标轴重合,其磁势为
矢量旋转变换
将三相电机转化为二相电机后,还需将二相交流电机变换为等效的直流电机。若设d为激磁绕组,通以激磁电id,q为电枢绕组,通以电枢电流iq ,则产生固定幅度的磁场Φ,在定子上以角速度ω0旋转。这样就可看成是直流电机了。将二相交流电机转化为直流电机的变换,实质就是矢量向标量的转换,是静止的直角坐标系向旋转的直角坐标系之间的转换。这里,就是把iα 和 iβ 转化为 id 和 iq ,转化条件是保证合成磁场不变。iα 和 iβ的合成矢量是 i1,将其在Φ方向及垂直方向投影,即可求得id 和 iq 。 id 和 iq 在空间以角速度ω0旋转。转换公式为
矢量控制中,还要用到直角坐标系与极坐标系的变换。由id和iq求i1,其公式为
采用矢量变换的感应电机具有和直流电机一样的控制特点,而且结构简单、可靠,电机容量不受限制,与同等直流电机相比机械惯量小。
2. 交流同步电机的矢量控制
基本原理
直流电机中,无论转子在什么位置,转子电流所产生的电枢磁动势总是和定子磁极产生的磁场成90°电角度。因而它的转矩与电枢电流成简单的正比关系。交流永磁同步电机的定子有三相绕组,转子为永久磁铁构成的磁极,同轴连接着转子位置编码器检测转子磁极相对于定子各绕组的相对位置。该位置与转子角度的正弦函数关系联系在一起。位置编码器和电子电路结合,使得三相绕组中流过的电流和转子位置转角成正弦函数关系,彼此相差120°电角度。三相电流合成的旋转磁动势在空间的方向总是和转子磁场成90°电角度(超前),产生最大转矩,如果能建立永久磁铁磁场、电枢磁动势及转矩的关系,在调速过程中,用控制电流来实现转矩的控制,这就是矢量控制的目的。