黄仁勋表示,将在NGC容器注册上,向交通运输行业开源NVIDIA DRIVE自动驾驶汽车深度神经网络。DRIVE AGX Orin能够赋力从L2级到L5级完全自动驾驶汽车开发的兼容架构平台,助力OEM开发大型复杂的软件产品系列。

由于Orin和Xavier均可通过开放的CUDA、TensorRT API及各类库进行编程,因此开发者能够在一次性投资后使用跨多代的产品。

黄仁勋表示:“打造安全的自动驾驶汽车,也许是当今社会所面临的最大计算挑战。实现自动驾驶汽车所需的投入呈指数级增长,面对复杂的开发任务,像Orin这样的可扩展、可编程、软件定义的AI平台不可或缺。”

推出NVIDIA DRIVE预训练模型

面对自动驾驶最核心的需求“安全”,英伟达开发了 “NVIDIA DRIVE预训练模”。也就是说,真正技术在道路上使用之前,首先是要在数据中心进行验证。

对于自动驾驶来说,第一步就是海量的数据收集工作。在有人驾驶的车辆上,需要安装很多的传感器。包括些摄象头、雷达,它们的作用就是收集大量的数据。

一般情况下,一辆车一天在外面开6小时-8小时,每周就会收集到PB级的数据。意味着这些海量信息需要进行处理、标记、存储、训练,从而更好的了解周围的环境,并且识别其它的车辆、车道信息等。

按照黄教主的说法,一个正常运行的安全自动驾驶技术需要许多AI模型组成,其算法具有多样性和冗余性。NVIDIA开发了先进的感知模型,用于检测、分类、跟踪和轨迹预测,还可用于感知、本地化、规划和制图。

除此之外,英伟达也开发了很多“深度神经网络”来识别各种各样的东西。也就是迁移学习,预训练的模型可以进行调整以适应原始的设备制造商,包括主机厂、传感器和具体的地区要求,当然调整的自由度是有限制的。

例如:检测路上的一些物体、路标,以及处理雷达、激光雷达。按照英伟达的说法,目前整个的这一系列软件,现在都可以给业界开放使用。

值得一提的是,这些都是基于英伟达自主知识产权的“预训练”模型,也是在他们的“云”上来进行训练的。此外,这些预训练模型均可从NGC上注册下载。

自动驾驶朋友圈进一步扩大,滴滴使用英伟达技术开发L4

英伟达的“朋友圈”依旧在扩张,黄教主在现场宣布,滴滴将使用NVIDIA GPU和其他技术开发自动驾驶和云计算解决方案。

滴滴将在数据中心使用NVIDIA GPU训练机器学习算法,并采用NVIDIA DRIVE为其L4级自动驾驶汽车提供推理能力。