● 根据它们的配置,CMOS ToF成像器往往具有更大的灵活性和更快的读出速度,因此可以实现感兴趣区域(RoI)输出等功能。

● 连续波ToF系统的温度校准可能比脉冲ToF系统更容易。随着系统温度升高,解调信号和激光信号会因为温度变化彼此偏移,但这种偏移只会影响测量距离,在整个距离范围内始终存在偏置误差,而深度线性度则基本保持稳定。

连续波系统的缺点:

● 虽然与其他传感器相比,CMOS传感器具有更高的输出数据速率,但连续波传感器需要在多个调制频率下获得4个相关函数样本,并使用多帧处理来计算深度。较长的曝光时间可能会限制系统的整体帧率,或导致运动模糊,因此只能在有限类型的应用中使用。这种更高的处理复杂性可能需要用到外部应用处理器,而这可能超出了应用的需求。

● 对于更远的测量距离或者更强环境光的场景,更高的连续光功率(与脉冲ToF系统相比)则十分必要;而这种高强度的连续光信号则可能导致散热和可靠性的新问题。

脉冲ToF技术系统的优点:

● 脉冲ToF技术系统通常依赖于在很短的时间窗口内发出高能光脉冲。它具有下列优点:

(1)更加便于设计鲁棒性强的系统,因此更适用于户外。

(2)曝光时间越短,运动模糊的效应越小。

● 脉冲ToF系统中的信号占空比通常比同等水平的连续波系统要低得多,因此具有以下优点:

(1)对于长期工作的应用,可以降低系统的总功耗。

(2)通过将脉冲群放置在与其他系统不同的帧位置,从而避免来自其他脉冲ToF系统的干扰。这可以通过协调各种系统在一帧中为激光脉冲选择不同的位置,或者使用外部光电探测器来确定其他系统脉冲的位置来实现。另一种方法是动态随机排列脉冲群的位置,这样就无需协调各个系统之间的时序,但这种方法无法完全消除干扰。

● 由于脉冲时序和宽度不需要一样,所以可以采用不同的时序方案,支持实现更宽的动态范围和自动曝光等功能。

脉冲ToF技术系统的缺点:

● 由于发射光脉冲的脉宽和快门的脉宽需要保持相同,所以系统的时序控制需要非常精确,根据应用需要,可能需要达到皮秒级精度。

● 为了达到最大效率,激光脉冲宽度必须非常短,但同时必须具有极高的功率。因此,激光驱动器需要实现非常快的上升/下降沿(《 1ns)。

● 与连续波系统相比,其温度校准过程可能更为复杂,因为温度的变化会影响单个脉冲宽度,不仅影响偏置和增益,还会影响其线性度。

● 如前所述,大多数脉冲系统都不使用CMOS传感器。例如: