不中断数据,轻松重新同步Σ-ΔADC

AD7770系列产品(包括AD7770、AD7771和AD7779)具有内置SRC。随着这种新架构推出,固定的抽取率(N)导致的限制将不复存在。

SRC允许您采用十进制数(而不仅仅是整数)作为抽取率(N),因此,您可以采用所需的任何输出数据速率。在之前的同步方法中,由于N是固定的,所以必须更改外部时钟来调节fMOD,之后才能实施同步。

使用AD7770系列产品之后,N会变成可灵活编程,以及可随时编程的值,所以无需更改fMOD,也无需中断数据,即可对ODR编程。

这种对基于∑-∆的子系统重新同步的新方法利用SRC来简化重新同步过程,最大程度地简化了前面章节提到的复杂性。

新方法如下:

·接收到Global_SYNC信号之后,各子系统检查采样是否同步,以数据就绪信号为参考,利用群延迟查找实际采样时刻。

·如果采样时刻和接收到Global_SYNC信号的时间之间存在时间差,那么本地控制器会量化这个时间差(tahead或tdelayed),如图9所示。

·这时,会对一个新的ODR编程,使其通过SRC更改抽取率(N),从而临时生成更快或更慢的ODR。整个重新同步操作一般会用到4个样本(如果在AD7771上启用了sinc5滤波器,则需要6个),但是因为这些样本仍然有效且完全设置,所以不会导致数据流中断。

·一旦接收到所需数量的DRDY,就会重新设置抽取因数,以返回所需的ODR,如此可以保证Σ-∆ADC与其余子系统保持同步,如图11所示,其不造成数据中断。

∑-∆的工作流程可以概括为哪四个主要步骤?

图11.采样速率转换器动态调整ODR,以便在所有设备上重新同步采样。

结论

关键分布式系统需要所有子系统同步进行转换,且具备持续的数据流。

SAR转换器提供一种直观的重新同步采样方法:通过重新调整转换开始信号,使其与Global_SYNC脉冲匹配。

在需要高动态范围(DR)或信噪比(SNR)的应用中,SAR不可使用,但是传统Σ-∆转换器也变得难以使用,因为这些转换器不具备灵活性,无法在不中断数据流的情况下重新调节。

如示例所示,SRC提供了一个无缝同步例程,与其他解决方案相比,它的延迟更小、成本和复杂性更低。

SRC可以在许多应用中一展所长。与电力线监控示例一样,任何线路频率变化都可以通过立即动态改变抽取率来补偿。如此,保证电力线的采样频率始终一致。按照本文所示,在关键分布式系统中,SRC也可用于高效重新同步系统,不会造成数据流中断,也不需要采用额外的元器件,例如PLL。AD7770解决了对基于Σ-ΔADC的分布式系统进行同步的传统问题,不会丢失样本,也不会像基于PLL的方法一样,额外增加成本和复杂性。