AD7731的可编程功能是通过12个片内寄存器来控制的,而对这些寄存器的访问则是通过串行接口来进行的。通过设置片内寄存器可以方便地控制AD7731的所有功能,并且还可以从片内寄存器中获取重要的状态信息以及模数转换结果。
3. 应用举例
由于AD7731模拟输入和参考输入都是差分输入,因此在模拟调制器上的大多数电压是共模电压。AD7731杰出的共模抑制功能可以滤除所有输入上的共模噪声。它的模拟电路和数字电路的供电电源是相互独立的,而且分别有相应的外部引脚,这样可以使模拟部分和数字部分的耦合最小化。数字滤波器能够有效滤除供电电源上的宽带噪声(除了在调制器取样频率的整数倍上)。倘若噪声源不使模拟调制饱和,数字滤波器也能起到把噪声从模拟输入和参考输入上滤除的作用。因此,AD7731具有比传统的高分辨率模数转换器更高的抗噪声能力。此外片内PAG允许AD7731处理从20mV到1.28V到模拟输入电压范围。因此AD7731可直接处理来自传感器的信号,非常适合于低带通、高分辨率的数据采集系统。
图2是利用AD7731模数转换器与8XC51单片机构成的一个高精度数据采集系统的电路连接原理图。由于8XC5单片机1是工作在模式0串行接口模式下,其串行接口只包含一条数据线,因此AD7731的两个引脚DATA OUT 和DATA IN必须连接在一块,且在串行通信时AD7731必须采用连续读取操作模式。如果要判断数据寄存器的内容是否已经更新,可以采用以下两种方案之一:(1) 通过软件编程的方法,监测状态寄存器的RDY位的状态。(2)增加接口线,监测来自AD7731的 输出线的状态。可以将RDY与8XC51端口中的一个(如P1.0输入端)进行连接,利用该端口位决定RDY的状态。也可以利用8XC51的一个输出端口(如P1.1) 控制AD7731的片选信号。此外,如果AD7731的模拟输入端的模拟输入电压均为正极性,则整个系统的电源可以只由单个5V提供。
由于AD7731上的串行时钟在数据传输之间为高电平,因此必须把AD7731的POL输入引脚硬连接为逻辑高电平。此外需注意AD7731与8XC51的数据字传输顺序是相反的,即在写操作中8XC51首先输出低有效字节,而AD7731总是先接受高有效字节,因此在数据被写入AD7731的输出串行寄存器之前必须重新安排数据的传输顺序;与此类似,在读操作中AD7731首先输出高有效字节,而8XC51先接受低有效字节,因此,来自AD7731的数据在载入8XC51的累加器之前也必须重新安排数据的传输顺序。
责任编辑:gt
关于模拟技术就介绍完了,您有什么想法可以联系小编。